12th Grade Assignment – Week #16

Announcement – Books to Purchase:

- Beginning in Week #21, we will have an extensive unit on the *Philosophy of Math.* This course will require a significant amount of reading, followed by discussion. Much of the reading material will be a collection of short articles that you can download. But an important part of the reading will be the following book, which you will need: *Logicomix: An Epic Search for Truth* by Apostolos Doxiadis and Christos Papadimitriou. It may be possible to find an online pdf of the book, but I think it would be worthwhile for you to purchase your own copy.
- Beginning in Week #29, there will be a main lesson on *Fractal Geometry & Chaos*. There will be a book required for this course too, and now would be a good time to purchase it: <u>Chaos: Making a New Science (James Gleick)</u>. (The book was first published in <u>1988</u>, and became massively popular. In <u>2008</u>, after more than a million copies had been sold, they released a special 20th-anniversary edition. It includes all of six pages of a new afterword, but is identical to the 1988 version otherwise. Any copy you get will be fine.)

Group Assignments:

for Tuesday Do **Problem Set #4** (*Calculus – Part I*), pr #4-6.

for Thursday

- Do Problem Set #5 (Calculus Part I), in the following order: #8, 9, 5, 6, 7
- If you still have extra time, help each other with some of the more difficult problems from the individual work (below).

Individual Work

• Do **Problem Set #5** (*Calculus – Part I*), pr #1-4.

Problem Set #4 (continued)

- 4) Derivative Practice.
 - a) Find $\frac{d}{dx}(x^3 + 7x^2 3\sin x)$
 - b) Find $\frac{d}{dx} (5 \sin^2 x)$
 - c) Find $\frac{d}{dx} \left(\frac{1}{\cos^3 x} \right)$
 - d) Find $\frac{d}{dx} (e^x \cos x)$
- 5) Find $\frac{dy}{dx}$.
 - a) $y = \tan x$
- 1) Find f'(x). a) $f(x) = \cos(\frac{1}{2}x)$
 - b) $f(x) = \frac{\sin x}{4x^2}$
 - c) $f(x) = \sin x \cdot \cos x$
 - d) $f(x) = \sin^2 x \cdot \cos x$
 - e) $f(x) = \frac{x^2 + 3}{x 3}$
 - f) $f(x) = \frac{1}{(x+3)^5}$
 - g) $f(x) = \frac{1}{(4x+3)^5}$
 - h) $f(x) = \tan^3 x$
- 2) Find f'(x).
 - a) $f(x) = \frac{1}{\sqrt{x}}$
 - b) $f(x) = \frac{3x+2}{2x-1}$
 - c) $f(x) = \csc(x^3)$
 - d) $f(x) = 4x \cos x$
 - e) $f(x) = \cos(4x)$
 - f) $f(x) = \sqrt{\cos^2 x + 1}$

b) $y = \cot x$ c) $y = \sec x$ d) $y = \csc x$ e) $y = \frac{x^3}{x-4}$ 6) Find f'(x). a) $f(x) = (\sin x + 3)^5$ b) $f(x) = \sin(x^5 + 3)$ c) $f(x) = \frac{5}{e^x}$

Problem Set #5

- g) $f(x) = \frac{1}{3} \ln(x^3)$ h) $f(x) = x^3 \ln x$ i) $f(x) = \frac{\ln x}{x^3}$
- 3) Find the slope of...
 a) f(x) = sin x at x = π/3
 b) f(x) = cos x at x = 0
 c) f(x) = e^x at x = 1
 d) f(x) = ln x at x = 5
 e) f(x) = ln(4x) at x = 5
 f) f(x) = ln x at x = 2/3
- 4) Evaluate the integrals. a) $\int_{0}^{\pi/4} \sin x \, dx$ b) $\int_{\pi/6}^{\pi/3} \cos x \, dx$ c) $\int_{1}^{10} \frac{1}{x} \, dx$ d) $\int_{-\infty}^{0} e^{x} \, dx$ e) $\int_{-\infty}^{1} e^{x} \, dx$

- d) $f(x) = e^{3x}$ e) $f(x) = \sqrt{1 - x^2}$
- f) $f(x) = \cos(3x^4) + \cos x$
- g) $f(x) = \cos(3x^4) \cdot \cos x$
- h) $f(x) = \ln(3x)$
- i) $f(x) = \ln(\frac{1}{4}x)$
- j) $f(x) = \ln(ax)$
- k) What do the above three problems tell us?
- 5) a) Given $f(x) = 5^x \operatorname{find} \frac{dy}{dx}$. (Hint: Change the base!)
 - b) Given $f(x) = 5^x$ find F(x).
- 6) a) Given $f(x) = a^x \text{ find } \frac{dy}{dx}$.
 - b) Given $f(x) = a^x$ find F(x).

7) Find
$$\frac{d}{dx}(\log_2 x)$$

- 8) Given $f(x) = \frac{1}{x} ...$
 - a) What is the area of the region bounded by the curve, the x-axis, and to the right of the line x = 1?
 - b) What is the volume of the vortex (i.e., funnel) that is created by rotating the above area about the x-axis?
- 9) Given $f(x) = \frac{1}{x^2} \dots$
 - a) What is the area of the region bounded by the curve, the x-axis, and to the right of the line x = 1
 - b) What is the volume of the vortex that is created by rotating the above area about the x-axis?