9th Grade Assignment – Week #34

Group Assignment:

For Tuesday

 Do these problems: Fractions & Square Roots – Problem Set #5: Problems #1-5, 20, 21, 24 Fractions & Square Roots – Problem Set #6: Problems #1-6, 19, 20, 24

For Thursday

- Do these problems: Fractions & Square Roots – Problem Set #7: Problems #1, 13, 16, 18, 23
- *Puzzle!* John, Kevin, and Stacy need to split a pile of logs. If all three of them work together, it would take them 1½ hours to do the whole pile. If Kevin and Stacy do it together (without John), then it would take 2 hours. How long would it take John to do it on his own?

Individual Work

• As much as possible, do the problems from **Fractions & Square Roots – Problem Sets #5, #6, #7** that either weren't assigned for group work, or that your group didn't complete.

Additionally... (If you or your group has extra time and desire)

• Work on **Possibility & Probability – Problem Set #6**.

- Fractions & Square Roots -

Problem Set #5

Group Work

Simplify. $(2+\sqrt{3})(7+\sqrt{3})$ 1) 2) $(4+3\sqrt{2})(5-\sqrt{2})$ 3) $(3+\sqrt{5})^2$ 4) $(5-4\sqrt{3})^2$ 5) $(3-\sqrt{2})(3+\sqrt{2})$ **Homework** Simplify. 6) $\sqrt{50} + \sqrt{18}$ 7) $(6+\sqrt{3})(2+\sqrt{3})$ 8) $(6+\sqrt{2})(2+\sqrt{3})$ 9) $(2+\sqrt{7})^2$ 10) $(3-2\sqrt{5})^2$ 11) $(5 - \sqrt{3})(5 + \sqrt{3})$ 12) $\frac{4}{3\sqrt{5}}$ 13) $\frac{5}{3+\sqrt{2}}$ 14) $\frac{3}{4x^2y} - \frac{1}{3xy^3}$ 15) $\frac{4}{x^3} + \frac{2}{x^2y^2} - \frac{1}{y^2}$

16)
$$\frac{4}{x-5} + \frac{1}{5-x}$$

17) $\frac{2x}{x-3} - \frac{3}{x+3}$
18) $xy^{-1} + x^{-1}y$
19) $\frac{6x-5}{5-6x}$
20) $\frac{4x^3 - 20x^2}{25-x^2}$
21) $\frac{3x^2 + 6x}{4-x^2}$
22) $\frac{2}{2-\frac{2}{2-\frac{1}{2}}}$
23) $\frac{\frac{x}{x+y} + \frac{y}{x-y}}{\frac{x}{x-y} - \frac{y}{x+y}}$
Solve.
24) $\frac{1}{x} + \frac{1}{x+5} = \frac{1}{6}$
25) $2 - \frac{5}{x^2-x-6} = \frac{x+3}{x+2}$

26) The difference of two numbers is $\frac{5}{12}$ and their product is 6. Find the two numbers.

Problem Set #6

 $+ 2x^2y^2$

<u>Group Work</u> Simplify.	14) $\frac{3}{2-\sqrt{3}}$
1) $\frac{\sqrt{21}}{\sqrt{15}}$	15) $\frac{6}{5-\sqrt{7}}$
2) $\frac{6}{5\sqrt{2}}$	16) $\frac{6-\sqrt{6}}{6-\sqrt{2}}$
3) $\frac{6}{5+\sqrt{2}}$	17) $\frac{x}{x+3} - \frac{4}{x-3}$
4) $\frac{3-\sqrt{2}}{5+\sqrt{2}}$	18) $\frac{x}{3-x} + \frac{3}{x-3}$
5) Let $x = 4 - \sqrt{3}$ and $y = 4 + \sqrt{3}$. X and y are called <i>conjugates</i> . Find:	19) $\frac{3}{4x+6} - \frac{x+4}{6x+9}$
a) x and y on a calculator.	$20) \frac{8x^3y^4 - 6x^4y^2 + 2x^2y}{2x^2y^2}$
 b) x+y c) x•y d) What is special about conjugates? 6) Find the common solution to 3x - y = 12 2y = y² + 6y = 11 	21) $\frac{\frac{3x^3}{x^2-4}}{\frac{6x^2-9x}{2x^2+x-6}}$
$2y - x^{2} + 6x = 11$ <u>Homework</u> Simplify. 7) $\sqrt{150}$ 8) $\frac{6}{2}$	22) $\frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{x}}}}$
$\begin{array}{l} 8) & 5\sqrt{3} \\ 9) & \frac{3\sqrt{6}}{4\sqrt{15}} \end{array}$	Solve. 23) $\frac{6x}{x+15} = \frac{1}{4-x}$
10) $(4 + \sqrt{2})^2$	24) $\frac{x+1}{2x-2} = \frac{x}{6} + \frac{1}{x-1}$
11) $(4\sqrt{2})^2$ 12) $(4 + \sqrt{2})(4 - \sqrt{2})$	25) $\frac{3x}{x-1} - \frac{4}{x+1} = \frac{4}{x^2-1}$
13) $(1-2\sqrt{3})^2$	

13) $(1-2\sqrt{3})^2$

Problem Set #7

Group Work

Long Division Study the example below. It shows that $(x^3+5x^2+11x+10) \div (x+2)$ equals x^2+3x+5 . $x+2 \overline{x^3+5x^2+11x+10}$ $-(\underline{x^3+2x^2})$ $2x^2+11$

$$3x^{2}+11x - (3x^{2}+6x) - (5x+10) - (5x+10) - (5x+10) - (5x+10) - 0$$

Now try this one: $x^{3}+6x^{2}+15x+28$

1)
$$\frac{x^{2}+6x^{2}+15x+23}{x+4}$$

Homework

Simplify.

- 2) $\sqrt{280}$
- 3) $\sqrt{3^5}$
- 4) $3\sqrt{2} + 4\sqrt{5}$
- 5) $(3\sqrt{2})(4\sqrt{5})$
- 6) $\frac{9}{5\sqrt{7}}$
- $7) \quad \frac{2x^2}{8x^6}$
- 8) $\sqrt{3} \cdot \frac{\sqrt{3}}{3}$
- 9) $(2-\sqrt{5})^2$

10)
$$(3+2\sqrt{5})^2$$

- 11) $(4-2\sqrt{3})(4+2\sqrt{3})$
- 12) $\frac{9}{5+\sqrt{7}}$

13)
$$\frac{2 + \sqrt{3}}{2 - \sqrt{3}}$$
14)
$$\frac{3x}{x+7} + \frac{3}{x-4}$$
15)
$$\frac{7}{x+3} - \frac{4}{3+x}$$
16)
$$\frac{7}{x-3} - \frac{4}{3-x}$$
17)
$$\frac{7}{x-3} - \frac{4}{x+3}$$
18)
$$\frac{x-2}{x^2-25} - \frac{2}{3x^2+15x}$$
19)
$$\frac{\frac{x}{y} - \frac{x-y}{x+y}}{\frac{y}{x} + \frac{x-y}{x+y}}$$
20)
$$\frac{\frac{4x^2-16}{15x^2-30x+15}}{\frac{12-6x}{25x^2-25}}$$

Divide.

21)
$$\frac{x^3+9x^2+23x+15}{x+3}$$

Solve.

22) $\frac{3x+5}{6} - \frac{5}{x} = \frac{x}{2}$

23)
$$\frac{2}{x-1} = \frac{3}{x-2} + \frac{2}{x-4}$$

24)
$$\frac{3x-1}{x} + \frac{3}{x-3} = \frac{9}{x^2 - 3x}$$

25) Janet earns \$22/hr as a computer programmer and \$16 per hour as a lab assistant. Last week, she worked twice as many hours in the lab as she did programming. How much time did she work in the lab if she made a total of \$648 between the two jobs?

Problem Set #6

Section A

- 1) How many positive odd integers less than 10,000 can be written using only the digits 3,4,7,8, and 0 (and allowing for repeat digits)?
- 2) How many different ways are there to rearrange the letters of "STATISTICS"?
- 3) On a restaurant's menu there are 8 main courses, and 5 desserts. How many ways are there...
 - a) to order a main course and a dessert?
 - b) to order three different main courses to be shared between friends?
- 4) A baseball team has 15 players, four of whom pitch. How many ways can the awards best pitcher, most valuable player, and most improved player be given if...
 - a) any player can receive more than one award?
 - b) any player can only receive at most one award?
- 5) Six numbers are drawn from a hat. What is the probability that the numbers will be drawn in either ascending or descending order?
- 6) Two cards are drawn from a 52-card deck. Find the probability that...
 - a) both are hearts.
 - b) neither is red.

Section B

- 7) A pizza parlor has 12 different possible toppings that could be put on your pizza. How many possible ways could you choose 3 toppings or fewer?
- 8) In how many ways can 9 (different) presents be distributed to 3 children if each is to receive 3 presents?
- 9) Consider the map shown here:

		С				
					х	
			C	c		

- a) How many different shortest routes (no backtracking, no cutting across blocks) are there from A to C?
- b) How many different shortest routes are there from A to X?
- 10) Four cards are drawn from a 52-card deck. Find the probability that you will pick a 6, 7, 8, and 9?
- 11) With a five-card poker hand, what is the probability of getting...
 - a) no clubs.
 - b) all cards from the same suit.
 - c) only 5's and 6's.