- 1) 5/4
- 2) 6
- 3) 6
- 4) $\frac{y+3}{3}$
- 5) x/y or 5/3
- 6) The exterior angles of any polygon add to 360°.
- 7) 1. Givens as stated. 2. $AC \cong CB$ (def. of midpoint)
 - 3. $\angle DAC \cong \angle ECB$ (Corresponding \angle th.)
 - 4. $\Delta DAC \cong \Delta ECB$ (SAS \cong th.)
 - 5. $\angle DCA \cong \angle EBC$ (def. \cong figures)
 - 6. ∴CD || BE (Corresponding ∠ th. Converse)
- 8) 1. Given parallelogram ABCD.
- 2. Draw BD (post. 1)
- 3. AD || BC ; AB || CD (def. of parallelogram)
- 4. $\angle ABD \cong \angle BDC$ (alternate interior \angle th.)
- 5. $\angle CBD \cong \angle ADB$ (alternate interior \angle th.)
- 6. $\triangle CBD \cong \triangle ADB$ (ASA \cong th.)
- 7. $\therefore AB \cong CD; BC \cong AD$ (def. \cong figures)
- 9) 1. Given //gram ABCD.
 - 2. Draw BD (post. 1)
 - 3. AD || BC ; AB || CD (def. of parallelogram)
 - 4. ∠ABD ≅ ∠BDC (alternate interior ∠ th.)
 5. ∠CBD ≅ ∠ADB
 - (alternate interior \angle th.)

- 6. $\triangle CBD \cong \triangle ADB$ (ASA \cong th.)
- 7. $\therefore \angle A \cong \angle C$ (def. \cong figures)
- 8. Similarly, AC can be drawn to show that $\angle B \cong \angle D$.
- 10) 1. Givens as stated. 2. $AB \cong CD$
 - (parallelogram side th.) 3. $\angle A \cong \angle C$
 - 5. $\angle A \cong \angle C$ (parallelogram \angle th.) 4. $\triangle ABE \cong \triangle CDF$
 - $(SAS \cong th.)$
 - 5. \therefore BE \cong FD
 - $(def. \cong figures)$
- 11) 1. Givens as stated.
 - 2. $\angle 2 + \angle 1 = 180^{\circ}$ (Supplementary \angle th.)
 - 3. $\angle 5 + \angle 6 = 180^{\circ}$ (Supplementary \angle th.)
 - 4. $\angle 2 + \angle 1 = \angle 5 + \angle 6$ (C.N.1 or Transitive) 5. $\angle 2 \cong \angle 5$
 - 5. $\angle 2 = \angle 5$ (parallelogram \angle th.)
 - 6. $\angle 1 = \angle 6$ (C.N.3 or subtraction) 7. BE = FD
 - (parallelogram side th.) 8. $\triangle BEA \cong \triangle DFC$
 - 8. $\Delta BEA \cong \Delta DFC$ (SAS \cong th.)
 - 9. $\therefore \angle A \cong \angle C$ (def. \cong figures)
- 12) Diagonals bisect each other.
- Given parallelogram ABCD.
 AD || BC
- (def. of parallelogram) 3. $\angle ADB \cong \angle CBD$
- (Alternate Int. \angle th.) 4. AD \cong BC
- (parallelogram side th.) 5. $\angle DEA \cong \angle BEC$
- (Vertical \angle th.)

- 6. $\Delta DEA \cong \Delta BEC (AAS \cong th.)$
- 7. DE \cong EB; AE \cong EC $(def. \cong figures)$
- 8. .: The diagonals of the parallelogram ABCD bisect each other. (def. of bisect)
- 13) 1. Given rectangle ABCD
 - 2. $\angle A$, $\angle B$, $\angle C$, $\angle D$ are all right (90°) . (Def of rectangle)
 - 3. $\angle A + \angle B = 180^{\circ}$ and $\angle A + \angle D = 180^{\circ}$ (CN2)
 - 4. ∴ **BC** || **AD** and **AB || CD** (Elements I-28, or converse of Same-Side-Interior Angle Theorem)
 - 5. Draw AC (Post 1)
 - 6. $\angle BCA \cong \angle DAC$ (Elements I-29a, or Alt. Interior Angle Th.)
 - 7. AC \cong AC (Reflexive Property)
 - 8. $\triangle ABC \cong \triangle ACD$ (HL \triangle Congruency Th.)
 - 9. \therefore AB \cong CD and BC \cong **AD** (Def. of \cong figs)
- 1. Givens as shown. 14)
 - 2. $\angle BDE \cong \angle BAC$
 - (Corresponding \angle th.) 3. \triangle BDE ~ \triangle BAC $(AA \sim th.)$
 - 4. BD:BE = BA:BC(def ~ figures)
 - 5. BD:BA = BE:BC(Th. V-16)
 - 6. \therefore BD:DA = BE:EC (Th. V-17)

- 1) 2/3
- $\frac{a-7}{3}$ 2)
- $\frac{6}{20} = \frac{3}{10}$ 3)
- $\frac{y-3}{3}$ 4)
- $\frac{x}{5}$ or $\frac{4}{y}$ or $\frac{z}{w}$ 5)
- AB = 21; CE = 12; CB = 286)
- 7) BD = 27; CE = 12; BE = 36
- 8) AD = 1; CE = $1\frac{1}{2}$; CB = $7\frac{1}{2}$
- 9) BD = 16; AD = 8; CB = 30
- 10) Answers may vary.
- 11) 1. Givens as stated. 2. $\angle A \cong \angle E$ (alternate interior \angle th.)
 - 3. $\angle B \cong \angle D$ (alternate interior \angle th.) 4. $\therefore \Delta ABC \cong \Delta EDC$
 - $(ASA \cong th.)$
- 12) 1. Givens as stated.
 - 2. AC \cong CE
 - (def. of midpoint) 3. BC \cong CD
 - (def. of midpoint) 4. $\angle ACB \cong \angle ECD$
 - (Vertical \angle th.) 5. $\therefore \triangle ABC \cong \triangle EDC$ $(SAS \cong th.)$
- 13) The diagonals are congruent.
 - 1. Given rectangle ABCD.
 - 2. $\angle ADC$, $\angle BCD$ are right (def. of rectangle)
 - 3. $\angle ADC \cong \angle BCD$ (Post. 4)
 - 4. $AD \cong BC, AB \cong DC$ (rectangle side th.)
 - 5. $\triangle ADC \cong \triangle BCD$ $(SAS \cong th.)$
 - 6. $\therefore AC \cong BD$ $(def. \cong figures)$

- 14) 1. Givens as shown. $\angle CXA \cong \angle FXD$ 2. (vertical \angle th.) 3. $\triangle AXC \cong \triangle DXF$ $(SAS \cong Th.)$ 4. $\angle A \cong \angle D$ $(def. \cong figures)$ $\angle BXA \cong \angle EXD$ 5. (vertical \angle th.) 6. $\Delta BXA \cong \Delta EXD$ $(ASA \cong th.)$ 7. \therefore BX \cong XE (def. \cong figures) 15) a) The diagonals are perpendicular. 1. Given rhombus ABCD. $2.DE \cong EB$ (Parallelogram diagonal th.) $3.DC \cong BC$ (def. of rhombus) $4.\Delta DEC \cong \Delta BEC$ $(SSS \cong th.)$ $5. \angle \text{DEC} \cong \angle \text{BEC}$ $(def. \cong figures)$ $6.:EC \perp DB$ (def. perpendicular) b) rhombus = $32\sqrt{3}$; rectangle = $64\sqrt{3}$ c) rhombus:rectangle = 1:216) 1. Givens as stated. 2. $\triangle ABC \cong \triangle ACD$ $(SSS \cong th.)$ 3. $\angle 7 \cong \angle 8$ $(def. \cong figures)$ 4. $\triangle BCE \cong \triangle DCE$ $(SAS \cong th.)$ \therefore EB \cong ED 5. $(def. \cong figures)$ 17) 1. Givens as stated. 2. $\angle 1 \cong \angle 4$ (alternate interior \angle th.) 3. $\triangle ABD \cong \triangle CDB$ $(SAS \cong th.)$
- 4. $\angle 2 \cong \angle 3$ (def. \cong figures)
- 5. ∴BC || AD (alternate interior ∠ converse)
- 18) 1. Givens as stated.
 - 2. $\angle ADC \cong \angle CBA$ (parallelogram angle th.)
 - 3. $\angle 5 \cong \angle 4$ (C.N.3 or subtraction)
 - 4. BC ≅ AD (parallelogram side th.)
 5. BC || AD
 - 5. BC || AD (def. parallelogram) 6. $\angle 7 \cong \angle 2$
 - (alternate interior \angle converse)
 - 7. $\therefore \Delta ADY \cong \Delta CBX$ (ASA \cong th.)
- 19) 1. Given ∆ABC; AD bisects ∠BAC
 - 2. $\angle 1 \cong \angle 2$ (def. bisect)
 - 3. Draw line *l* through B parallel to AD (Th. I-31)
 - 4. Extend AC to intersect with line ℓ at point Q (Post 2)
 - 5. $\angle 2 \cong \angle Q$ (corresponding \angle th.)
 - 6. $\angle 1 \cong \angle ABQ$ (alternate interior \angle th.)
 - 7. $\angle Q \cong \angle ABQ$ (C.N.1) 8. $QA \cong AB$ (isosceles triangle
 - converse)
 9. DC:BD = AC:QA
 (Δ proportionality th.)
 - 10. \therefore DC:BD = AC:AB (substitution)

- 1. Given the diagram above, by similar triangles, we know A:B = 10:15, and also A:B = X:Y.Therefore X:Y=10:15 \rightarrow $X = \frac{2}{3}Y$
- 2. X+Y = 15
- 3. $\frac{2}{3}Y + Y = 15$
- 4. Y = 9; X = 6.
- 21)

20)

- a) 250,000 stadia.
- b) About 0.86% error.

- 1) 1. Givens as stated.
 - 2. $\angle BCF \cong \angle DCG$ (vertical \angle th.)
 - 3. $\triangle BCF \cong \triangle DCG$ $(AAS \cong th.)$
 - 4. BF \cong GD (def. \cong figures)
 - 5. $\angle BFC + \angle BFA = 180^{\circ};$ $\angle CGD + \angle EGD = 180^{\circ}$ (Suppl. \angle Th.)
 - 6. $\angle BFC \cong \angle CGD$ (post 4)
 - 7. $\angle BFA = 90^{\circ};$ $\angle DGE = 90^{\circ}$ (C.N.3 or subtraction)
 - 8. $\angle BFA = \angle DGE$ (C.N.1 or post. 4 or transitive)
 - 9. $\triangle BFA \cong \triangle DGE$ $(SAS \cong th.)$

- 10. $\therefore \angle A \cong \angle E$ $(def. \cong figures)$
- 1. Given $\triangle ABC$; D is 2) midpoint of AC; E is midpoint of BC.
 - 2. $CD \cong DA; CE \cong EB$ (def. of midpoint)
 - 3. CA=CD+DA; CB=CE+EB (seg. add. post)
 - 4. CA=CD+CD; CB=CE+CE (substitution)
 - 5. CA=CD+CD \rightarrow $CA=2CD \rightarrow CA:CD =$ 2:1; $CB=CE+CE \rightarrow$ $CB=2CE \rightarrow CB:CE =$
 - 2:1 (algebra) 6. CA:CD = CB:CE(transitive or CN1)
 - 7. CA:CB = CD:CE(Th. V-16)
 - 8. $\triangle ACB \sim \triangle DCE$ $(SAS \sim th.)$
 - 9. $\angle CED \cong \angle B$ (def. ~ figures)
 - 10. **.: DE** || **AB** (corresponding \angle converse)
 - 11. CA:AB = CD:DE(def. ~ figures)
 - 12. CA:CD = AB:DE(Th. V-16)
 - 13. ∴**AB:DE** = **2:1** <u>or</u> $DE = \frac{1}{2}AB$ (transitive or C.N.1)
 - BD=6; AB=9; CE=4
- 3) 4) $AD=10^{2/3}; AB=26^{2/3};$ BE=15
- 5) AB=10; BE=3.3; CE=7.7
- 6) BD=6; AB=93/4; CB=26

- 7) a) CD=14.4 b) AC=25 c) $23\frac{1}{3}$
- 8) 1. Givens as stated. 2. $\angle BAC \cong \angle BCA$
 - (isosceles Δ Th.) 3. $\angle 2 \cong \angle 4$ (isosceles Δ Th.)
- 4. $\therefore \angle 1 \cong \angle 3$ (C.N.3 or subtraction) 9) 1. Givens as stated.
 - 2. $\angle BAC \cong \angle BCA$ (isosceles Δ Th.)
 - 3. $\angle 2 \cong \angle 1; \ \angle 3 \cong \angle 4$ (def. bisect)
 - 4. $\angle BAC = \angle 1 + \angle 2;$ $\angle BCA = \angle 3 + \angle 4$ (angle addition post.)
 - 5. $\angle BAC = 2(\angle 2);$ $\angle BCA = 2(\angle 4)$ (substitution)
 - 6. $2(\angle 2) = 2(\angle 4)$ (transitive or C.N.1)
 - 7. $\angle 2 = \angle 4$ (algebra)
 - 8. $\therefore AD \cong CD$ (isosceles Δ converse)
- 10) Yes, it does work! This is theorem VI-31 from The Elements.
- 11) 7
- 12) $\sqrt{5c}$
- $\frac{4w}{3y}$ 13)
- 14) w+7
- 15)
- $\frac{3-x}{x}$ a) $y = 4\frac{4}{5}$; $x = 5\frac{5}{7}$ 16)
 - b) $y = \frac{70}{3}$; x = 14

- $PQ = \frac{20}{3}$ (because 17) BQ:QE = BC:YE) $CY = 5\sqrt{13}$ Explanation: Draw ZY, where Z is the midpoint of BC. The center of the hexagon is W. Triangle ZWC is a 30-60-90 triangle. ZW= $5\sqrt{3}$; $ZY=10\sqrt{3}$. Using triangle ZYC, we get CY= $5\sqrt{13}$
- 18) 1. Given.
 - Th. I-23 2.
 - 3. Th. III-21
 - Th. I-32b 4.
 - 5. C.N.3 [note: there's no AA ~ th. in Euclid]
 - 6. def. of equiangular [similar]
 - 7. Th. VI-4
 - 8. Th. VI-16
 - 9. C.N.2
 - 10. from drawing
 - 11. Th. III-21 12. Th. I-32b

 - 13. C.N.3
 - 14. def. of equiangular [similar]
 - 15. Th. VI-4
 - 16. Th. VI-16
 - 17. C.N.2 [from steps 8 & 16]
 - 18. Th. V-1
 - 19. from drawing

b)
$$\frac{180^\circ - x}{2} = 90^\circ - \frac{1}{2}x$$

c)
$$180^{\circ} - 2y$$

2) a)
$$90^{\circ}$$
 b) 90°

- 3) 1. Givens as stated.
 - 2. BD \cong AE
 - (rectangle diagonal th.) 3. $BD \cong AC$ (parallelogram side th.)
 - 4. $AE \cong AC$ (transitive or C.N.1)
 - 5. ∴∆ACE is isosceles (def. isosceles)
- 4) a) BF=CF=15; XF = 9; BX=DX=12; EX=16; ED=EB=20
 - b) All the triangles are similar to each other!
 - c) All angles are 90°, 36.9°, or 53.1°, except $\angle AED \approx 106.2^{\circ}$, and $\angle DFC \approx 73.8^{\circ}$
- 5) $\angle A = \angle B = \angle 5 = 108^{\circ};$ $\angle F = \angle 6 = 90^{\circ}; \ \angle 7 = 162^{\circ};$ $\angle 8 = \angle 9 = 9^{\circ};$ $\angle 1 = \angle 2 = \angle 3 = \angle 4 = 45^{\circ};$ $\angle 10 = \angle 12 = 36^{\circ};$ $\angle 11 = \angle 13 = 72^{\circ}$
- 6) 1. Givens as stated.
 - 2. AB≅BC≅AC (def. equilateral)
 - 3. $\angle A \cong \angle B \cong \angle C$ (Isosceles triangle th.)
 - 4. ∠DCB≅∠FBA≅∠EAC (Subtraction or C.N.3)
 - 5. $\triangle DCB \cong \triangle FBA \cong \triangle EAC$ (ASA \cong th.)
 - DB≅AF≅EC;
 DC≅FB≅EA (def. ≅ figures)
 - 7. DE≅DF≅EF (Subtraction or C.N.3)
 - 8. ∴ ∆DEF is equilateral (def. equilateral)
- 7) Because $\angle 1 \cong \angle 2$ and $\angle 7$ $\cong \angle 8$, we know that $\triangle ABC \cong \triangle ADC$, which means that BC \approx CD. Now

we can say that $\triangle BCE \cong \triangle DCE$. Therefore $\angle 5 \cong \angle 6$ and AC bisects $\angle BED$.

- Given ∆ABC; ∠ACB is a right angle; D is the midpoint of AB.
 - 2. Draw CD. (Post 1)
 - 3. Draw a line through D parallel to AC meeting BC at E, and a line through D parallel to BC meeting AC at F. (Th. I-31)
 - 4. $\angle BCA \cong \angle BED = 90^{\circ};$ $\angle BCA \cong \angle DFA = 90^{\circ}$ (corresponding \angle th.)
 - 5. $\triangle BED \sim \triangle BCA; \ \triangle DFA \\ \sim \triangle BCA \ (AA \sim th.)$
 - 6. BD=DA \rightarrow BD:DA=1:1 (def. of midpoint)
 - 7. BE:EC=1:1 \rightarrow BE=EC AF:FC=1:1 \rightarrow AF=FC (Δ proportionality th.)
 - 8. $\triangle CFD \cong \triangle AFD; \triangle BED$ $\cong \triangle CED$ (SAS \cong th.)
 - 9. BD \cong CD; AD \cong CD (def. \cong figures)
 - 10. ∴**ΔBDC**, **ΔCDA** are isosceles (def. isosceles)
 - 11. EDFC is a parallelogram (def. ∠)
 - 12. ED \cong CF; EC \cong DF (\square side th.)
 - 13. area $\triangle CDA = \frac{1}{2}CA \cdot DF$ = CF·DF; area $\triangle BDC = \frac{1}{2}BC \cdot ED$ = EC·ED
 - (def. area of triangle) 14. area $\triangle BDC = EC \cdot ED = DF \cdot CF$ (substitution)
 - 15. \therefore area $\triangle BDC = area \\ \triangle CDA$
 - (transitive or C.N.1)

9)
$$XY = \frac{f_0}{8}; CY = \frac{f_1}{12}$$

10) $\angle 6 = 72^\circ; \angle 2 = 36^\circ$
11) 1. Givens as stated.
2. $\angle 5 \cong \angle 6$
(isosceles triangle th.)
3. $\angle 6 = \angle 3 + \angle B;$
 $\angle 5 = \angle 1 + \angle A$
(\triangle exterior angle th.)
4. $\angle 3 + \angle B = \angle 1 + \angle A$
(\triangle exterior angle th.)
5. $\angle A = \angle B$ (C.N.3)
6. $AC \cong CB$ (isos. \triangle conv.)
7. $\therefore \triangle ABC$ is isosceles
(def. isosceles)
12) 1. Givens as stated.
2. $\angle BDA, \angle BCA$ are rt.
angles (Th. of Thales)
3. $\angle BDA = \angle BCA$
(Post 4)
4. $\angle DAB = \frac{1}{2} \operatorname{arc} BD;$
 $\angle DAC = \frac{1}{2} \operatorname{arc} DC$
(Inscribed Angle Th.)
5. $\angle DAB \cong \angle DAC$
(transitive or C.N.1)
6. $\triangle DBA \sim \triangle CEA$
(AA Th.)
7. $AD:BD = AC:CE$
(def. similar figures)
8. $AB:BE = AC:CE$
($\Delta Age Bisector Th.$)
10. $AB:BE =$
($AB+AC$):($BE+CE$)
($Th. V-16$)
9. $AB:AC=BE:CE$
($\angle Angle Bisector Th.$)
10. $AB:BE =$
($AB+AC$):($BE+CE$)
($Transitive$)
12. $\therefore AD:BD =$
($AB+AC$):($BE+CE$)
($Transitive$)
13. a) $X = \frac{24}{11} = 2\frac{2}{11};$
 $Y = \frac{77}{8} = 9\frac{5}{8}$

b)
$$X = \frac{32}{11} = 2\frac{10}{11};$$

 $Y = \frac{12}{11} = 1\frac{1}{11}$

14) a) b =
$$4\frac{1}{2}$$
 b) a = $\frac{20}{3} = 6\frac{2}{3}$
c) c = $\frac{16}{5} = 3\frac{1}{5}$

- 15) 1. Givens as stated.
 - 2. EB ≅ EC (isosceles triangle converse)
 - 3. AE ≅ ED (isosceles triangle converse)
 - 4. $\therefore \triangle ABE \cong \triangle DCE$ (SSS \cong th.)
- 16) 1. Givens as stated.

2.
$$\angle 5 \cong \angle 2$$
; $\angle 6 \cong \angle 3$
(corresponding \angle th.)

- ∠5 ≅ ∠6 (transitive or C.N.1)
 BE≅CE; AE≅ED; EF≅EG
- 4. BEECE; AEEED; EFEEG (isosceles Δ converse) 5. $\angle F + \angle 2 = 180^\circ \rightarrow$
- 5. $\angle F + \angle 2 = 180^{\circ} \rightarrow \angle F = 180^{\circ} \angle 2;$ $\angle G + \angle 3 = 180^{\circ} \rightarrow \angle G = 180^{\circ} - \angle 3$ (supplementary \angle th.)
- 6. $\angle G = 180^\circ \angle 2$ (substitution)
- 7. $\angle G \cong \angle F$ (transitive or C.N.1)
- 8. $\triangle AFE \cong \triangle DGE$ (AAS \cong th.)
- 9. $AF \cong GD$ (def. \cong figures)
- 10. FB \cong GC (subtraction or C.N.3)
- 11. $\angle 9 \cong \angle 2$; $\angle 12 \cong \angle 3$ (vertical \angle th.)
- 12. $\angle 9 \cong \angle 12$ (transitive or C.N.1) 13. $\triangle AFB \cong \triangle GDC$
- $(SAS \cong th.)$
- 14. $\therefore \angle 7 \cong \angle 8$ (def. \cong figures)

- 17) Draw a line through A that is parallel to BC intersecting DC at a point labeled E. ABCE is a parallelogram. AE is congruent to BC, and therefore also congruent to AD, which makes $\angle AED$ is congruent to $\angle D$. And since $\angle AED$ is congruent to $\angle C$, $\angle C$ must be congruent to $\angle D$.
- 18) 1. Given DF,CF,BH,AH are \angle bisectors of ABCD.
 - 2. $\angle DAE = \angle BAE; \angle CDE$ = $\angle ADE$ (def. bisect)
 - 3. $\angle DAB = \angle DAE + \angle BAE;$ $\angle ADC = \angle CDE + \angle ADE$ (segment add. post.)
 - 4. $\angle DAB = \angle DAE + \angle DAE$ $\rightarrow \angle DAB = 2\angle DAE$ $\angle ADC = \angle ADE + \angle ADE$ $\rightarrow \angle ADC = 2\angle ADE$
 - (substitution) 5. DC || AB (def. parallelogram)
 - 6. $\angle DAB + \angle ADC = 180^{\circ}$ (same-side int. \angle th.)
 - 7. $2\angle DAE + 2\angle ADE =$ 180° (substitution)
 - 8. $\angle DAE + \angle ADE = 90^{\circ}$ (division by 2)
 - 9. $\angle DEA + \angle DAE + \\ \angle ADE = 180^{\circ}$ (Δ interior angle th.)
 - 10. $\angle DEA + 90^\circ = 180^\circ \rightarrow \angle DEA = 90^\circ$
 - (substitution & algebra) 11. \angle HEF = 90°
 - (vertical angle th.) 12. Similarly, it can be shown that ΔDFC ,
 - ΔCGB , ΔAHB are right triangles, and the other angles of EFGH are right angles.
 - 13. ∴ĚFGH is a rectangle. (def. rectangle)

- 19) Here's one possible proof: 1. Given trapezoid ABCD,
 - with AB || CD and AD not parallel to BC, and EF is a median of sides AD and BC.
 - 2. Draw line DF. Label the point where it intersects with AB (both extended) as X. (post. 1 and 2)
 - 3. $\angle CFD \cong \angle XFB$ (vertical angle th.)
 - 4. $\angle CDF \cong \angle FXB$ (alternate interior \angle th.)
 - 5. $CF \cong FB$ (def. median)
 - 6. $\triangle CDF \cong \triangle FXB$ (AAS \cong th.)
 - 7. $DF \cong FX$
 - (def. \cong figures) 8. DE \cong EA (def. median)
 - 9. DX = DF + FX; DA = DE + EA
 - (segment add. post.)
 - 10. $DX=DF+DF \rightarrow DX=2DF \rightarrow DX:DF=2:1$ $DA=DE+DE \rightarrow DA=2DE \rightarrow DA:DE=2:1$ (substitution)
 - 11. $\triangle DEF \sim \triangle DAX$ (SAS ~ th.)
 - 12. $\angle \text{DEF} \cong \angle \text{A}$ (def similar figures)
 - 13. ∴EF || AB (corresponding angle converse)

Here's another very different approach:

- 1. Given trapezoid ABCD, with AB || CD and AD not parallel to BC, and EF is a median of sides AD and BC.
- 2. Extend AD & BC to meet at point Q. (post. 2)

- 3. AE=ED=x; CF=FB=y (def. median) also, let DQ=z, and CQ=w
- 4. AD = DE + EA = 2x; CB = CF + FB = 2y(segment addition post.)
- 5. z:2x = w:2y(Δ proportionality th.)
- 6. z:x = w:y (multiplication or Th. V-4)
- 7. z:(x+z) = w:(y+w) (Th. V-18)
- 8. z:w = (x+z):(y+w)(Th. V-16)
- 9. $\triangle QDC \sim \triangle QEF$ (SAS ~ th.)
- 10. $\angle QDC \cong \angle QEF$ (def. similar figures)
- 11. $\angle QDC \cong \angle QAB$
- (Corresponding \angle Th.) 12. \angle QEF $\cong \angle$ QAB (C.N.1)
- 13. ∴EF || AB (Corr. ∠ Converse)

- I. The Pentagon & the Golden Triangle
- 1) There are only two differently shaped triangles.
- Given regular pentagon ABCDE inscribed in a circle.
 - 2. All five sides of the pentagon are equal. (def. of regular)
 - 3. All five arcs are equal. (equal chord th.)
 - Each of the three angles at each vertex of the pentagon are equal, including ∠QDC ≅ ∠CAD (inscribed ∠ th.)
 - 5. $\therefore \Delta DCQ \sim \Delta ACD$ (AA ~ th.)

- 3) All angles are either 36° , 72° or 108° .
- 4) 1. Given regular pentagon ABCDE inscribed in a circle.
 - 2. $\triangle DCQ \sim \triangle ACD$ (as shown above)
 - 3. DC:DQ = AD:AC = 1:1 \rightarrow DQ=DC (def. ~ figures)
 - 4. $\angle CAD \cong \angle ADB$ (as shown above)
 - 5. DQ = AQ (isosceles triangle th.)
 - 6. DC = AQ (transitive or C.N.1)
 - 7. DC:QC = AC:DC (def. ~ figures)
 - 8. $DC^2 = AC \cdot QC$ (algebra)
 - 9. $\therefore AQ^2 = AC \cdot QC$ (substitution)
- 5) AQ=1; AC≈1.618; QC≈0.618; PQ≈0.382
- 6) D:S \approx 1.618:1; S:D \approx 0.618:1
- 7)
 - a) 0.618 from J.
 - b) W:L \approx 1.618:1
 - c) L:W $\approx 0.618:1$
 - d) L:S \approx 1.618:1
 - e) W:S \approx 2.618:1

8)	1 Given	14 Th I-32a
0)	$\begin{array}{ccc} 1. & \text{Given} \\ 2. & \text{Th} \text{II} 11 \end{array}$	14. 11.152a
	2. 111. 11-11	13. C.IV.1
	3. Post. 3	16. Def. of circle
	4. Th. I-2	17. Th. I-5
	5. Post. 1	18. C.N.1
	6. Th. IV-5	19. Th. I-6
	7. C.N.1	20. C.N.1 [steps 4 & 19]
	8. Th. III-37	21. Th. I-6
	9. Th. III-32	22. C.N.1 or substitution
	10. Th. III-20	[steps 13 & 21]
	11. C.N.1	23. C.N.1 [steps 17 & 22]
	12. C.N.2	-
	13. from drawing	
	[angle addition post.]	

II. All Triangles are Isosceles!?

The easiest way to see the error is to construct this triangle.

Point E will usually lie outside of $\triangle ABC$.

III. A Pythagorean Curiosity

- 1) Squares AE and NH are congruent. Triangles ABC, MHC and KNR are all congruent, and similar to Δ PQR. All the squares are similar to one another.
- To prove LM is parallel to ON: First, we draw line LN. Considering the four angles that meet at point A (and ignoring the dotted line), we can say that m∠LAD = 180° - m∠CAB. Likewise, m∠LMN = 180° - m∠CMH. Since ∠CMH ≅ ∠CAB, we now know ∠LAD ≅ ∠LMN. And because squares AE and MK are congruent, we can say that ΔLAD ≅ ΔLMN (SAS). It then follows that OL ≅ LN and ∠NOL ≅ ∠ONL, which we will call θ. Letting α = ∠MLN (=∠ALD), and considering the angles surrounding point L, we can say that ∠OLN = 180° - 2α. Considering ΔOLN, we get ∠OLN = 180° - 2θ, which allows us to say that α = θ. It follows that the alternate interior angles ∠MLN and ∠ONL are equal and LM is parallel to ON.

- 3) a) All of these triangles have an area equal to the area of $\triangle ABC$, which is $\frac{1}{2}ab$. The reasoning is as follows. Since $\triangle MHC$ is congruent to $\triangle ABC$, their areas are equal. To find the area of $\triangle ADL$ extend line LA and drop a perpendicular line down from D to point V. This creates $\triangle ADV$, which is congruent to $\triangle ABC$. Therefore $\triangle ADL$ also has an area of $\frac{1}{2}ab$. Similarly, it can be shown that $\triangle IBE$ also has an area equal to $\frac{1}{2}ab$, as well.
- b) Points T and S come from extending LA and CM to the left. It can be shown that TS = SN = b, that OT = 2b, and that TL = a. Therefore, trapezoid LMNO has an area of $\frac{5}{2}ab$, which is 5 times the area of $\triangle ABC$. Similarly, it can be shown that trapezoid HIJK has the same area. In order to show that trapezoid DEFG has again that same area, we extend horizontal and vertical lines from points D and E, thereby dividing the trapezoid into five triangles. These five triangles have equal area because $\triangle DWG \cong \triangle LAD$, $\triangle IBE \cong \triangle EYF$, and the remaining three triangles ($\triangle WXD$, $\triangle EDX$, $\triangle XYE$) are all congruent to $\triangle ABC$.
- c) Since NO, KJ, and FG are four times longer, respectively, than b, a, and c, the areas of the squares drawn off NO, KJ, and FG are 16a², 16b² and 16c², respectively.
- d) Surprisingly, the squares NH, EJ and LG do not follow the typical Pythagorean relationship. In fact, if $\triangle ABC$ is isosceles, then square EJ is congruent to square LG. Since square NH is congruent to square AE, its area is c². By using $\triangle LVD$ to calculate the length of LD, we can determine that the area of square LG is $4b^2 + a^2$. Similarly, the area of square EJ turns out to be $4a^2 + b^2$.
- e) By drawing a horizontal line from point G, we create Δ GUO, which is congruent to Δ OTL. We therefore know that UG = 2b. Since Δ PUG is similar to Δ ABC, we can say that PU = 2b²/a, and that the area of Δ OGP is $\frac{1}{2}(2b^{2}/a + a)(2b)$, which works out to $(2b^{3} + a^{2}b)/a$. Similarly, the area of Δ JFQ is $(2a^{3} + b^{2}a)/b$.
- 4) a) These squares follow the normal Pythagorean relationship: $ON^2 + FG^2 = KJ^2$
 - b) This one is a pleasant surprise. Using our answer from 3d, above, we can say that $EJ^2 + LG^2 = 5NH^2$.
- 5) a) Using our work from 3e, we get RQ = $2b + 4a + 2a^2/b$, which works out to $\frac{2}{b}(a+b)^2$. RP = $\frac{2}{a}(a+b)^2$.
 - b) Of course, all of these ratios must be equal. It can be expressed as $\frac{2}{ab}(a+b)^2$:1 or as $2(a+b)^2$:ab.
 - c) The ratio of the areas is the square of the ratio of the lengths. The answer is $\frac{4}{a^2b^2}(a+b)^4$:1 or $4(a+b)^4$: a^2b^2