### 11<sup>th</sup> Grade Assignment – Week #21

#### Individual Work

- Take the test on *Possibility & Probability* found at the end of this document.
- Work on problems from **Problem Set #1** in the *Trigonometry Part III* unit.

### Group Assignment:

### for Tuesday

- <u>A Trigonometric Table</u>. Fill out the table (on the right), while keeping these things in mind:
  - You should memorize the trig values for angles of 30°, 45°, and 60°, both in terms of exact (irrational) values and decimal approximations (e.g.,  $\cos (30^\circ) = \sqrt{3}/2 \approx 0.866$ ).
  - However, for this table, only write the decimal approximations.
  - Be sure that you understand these identities:
    - $sin(90^{\circ}-\alpha) = cos(\alpha)$
    - $sin(180^{\circ}-\alpha) = sin(\alpha)$
    - $cos(180^{\circ}-\alpha) = -cos(\alpha)$
    - $tan(180^{\circ}-\alpha) = -tan(\alpha)$
  - Notice that equal increments of the angle measures do not correspond to equal increments of the trig values. How does this different with sin, cos, and tan?

## A Trigonometric Table

| Ð                        | SINO  | CDS O | tano  |
|--------------------------|-------|-------|-------|
| 0<br>15°<br>30°          | 0.259 |       | 0.268 |
| 45°<br>60°<br>75°<br>90° | 0.966 |       | 3,73  |
| 105°<br>120°<br>135°     |       |       |       |
| 150°<br>165°<br>180°     |       |       |       |

- How can this table help you to understand why the cos and tan of angles between 90° and 180° are negative?
- <u>Discover the Law of Cosines</u> by working through **Problem Set #2** in the *Trigonometry Part III* unit.

#### for Thursday

- Finish **Problem Set #2** (from Tuesday, above) if you did not do so already.
- Puzzle! Triangle & Square Pieces Part I

Determine how you can cut an equilateral triangle into four pieces which can then be rearranged into a perfect square. Be very clear about exactly where and how the pieces must be cut.

# Trigonometry – Part III

### Problem Set #1

### **Some Trig Identities**

- $sin(180^{\circ}-\alpha) = sin(\alpha)$
- $sin(90^{\circ}-\alpha) = cos(\alpha)$
- $sin^2\alpha + cos^2\alpha = 1$
- $\frac{a}{b} = \frac{\sin A}{\sin B}$  (Law of Sines!)
- $tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)}$
- $sin(\frac{1}{2}\alpha) = \sqrt{\frac{1}{2} \frac{1}{2}\cos\alpha}$
- $sin(\beta-\alpha)$ =  $sin(\beta)cos(\alpha) - sin(\alpha)cos(\beta)$
- $cos(\alpha+\beta)$ =  $cos(\alpha)cos(\beta)$  - $sin(\alpha)sin(\beta)$

And here are two new ones:

- $cos(180^{\circ}-\alpha) = -cos(\alpha)$
- $tan(180^{\circ}-\alpha) = -tan(\alpha)$
- 1) Given  $\sin(10^\circ) \approx 0.1736$ , use the above formulas (but not the trig buttons on your calculator) to calculate the following. In each case, also state which formula you used.

| a) si | n(170°) | d) | <i>tan</i> (10°) |
|-------|---------|----|------------------|
|-------|---------|----|------------------|

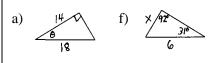
- b)  $cos(80^\circ)$  e)  $cos(170^\circ)$
- c)  $cos(10^{\circ})$  f)  $tan(170^{\circ})$
- 2) Without the use of a calculator, give an exact answer or an estimate.

(Do you still remember the *Basic Trig Facts* from Problem Set #1 of the *Trigonometry Part II* unit?)

| a) | $cos(60^{\circ})$ | 1) | $cos(45^{\circ})$ |
|----|-------------------|----|-------------------|
| b) | $sin(0^{\circ})$  | m) | $cos(90^{\circ})$ |
| c) | $sin(25^{\circ})$ | n) | $tan(90^\circ)$   |
| d) | $cos(30^{\circ})$ | 0) | $sin(60^\circ)$   |
| e) | $sin(45^{\circ})$ | p) | $sin(65^{\circ})$ |
| f) | $tan(30^\circ)$   | q) | sin(90°)          |
| g) | $tan(60^\circ)$   | r) | $cos(25^{\circ})$ |
|    |                   |    |                   |

- h)  $cos(0^\circ)$  s)  $tan(45^\circ)$
- i)  $tan(25^\circ)$  t)  $sin(120^\circ)$
- j)  $sin(30^{\circ})$  u)  $cos(120^{\circ})$
- k)  $tan(0^\circ)$  v)  $tan(120^\circ)$

- 3) Without the use of a calculator, give an exact answer or an estimate. (Remember that *sin*<sup>-1</sup> normally has two answers.)
  - a)  $sin^{-1}(0.5)$  f)  $cos^{-1}(0.25)$
  - b)  $cos^{-1}(\frac{\sqrt{2}}{2})$  g)  $sin^{-1}(1)$
  - c)  $sin^{-1}(0.8)$  h)  $sin^{-1}(0)$
  - d)  $tan^{-1}(0.5)$  i)  $tan^{-1}(-\frac{\sqrt{3}}{3})$
  - e)  $sin^{-1}(\frac{\sqrt{2}}{2})$  j)  $cos^{-1}(-0.5)$
- 4) Find the variable indicated.



c) 
$$\frac{72^{\circ} \times h}{14}$$
 h)  $\frac{6}{6}$ 

d) 
$$\frac{14^{\circ}}{x}$$
 3 i)  $\frac{2}{120^{\circ}}$  x  $\frac{15}{x}$ 

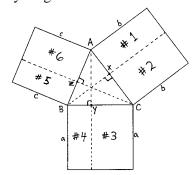
### Problem Set #2

#### Two Proofs of The Law of Cosines

1) A Proof using Squares. Fill in the steps as indicated. Given acute triangle,  $\triangle ABC$ ,



we attach squares to the sides of the triangle, draw altitudes to the sides of the triangle, and label everything as shown.

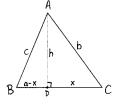


- a) Explain why the length of AX is equal to c•cos(A).
- b) Similarly, find the lengths of CX, BY, CY, AZ, BZ.
- c) Give expressions for the areas of the six rectangles, in terms of a, b, c, A, B, C. Which ones are equal?
- d) Explain the final steps:

$$\begin{array}{l} \#5 + \#6 + \#3 = \#1 + \#2 + \#4 \\ c^2 + \#3 = b^2 + \#4 \\ c^2 + \#3 + \#3 = b^2 + \#4 + \#3 \\ c^2 + 2(\#3) = b^2 + a^2 \\ \hline c^2 = a^2 + b^2 - 2ab \cdot cos(C) \end{array}$$

2) A Proof without Squares.

We begin again with an acute triangle,  $\triangle ABC$ . We drop an altitude from the apex, thereby dividing the original triangle into two right triangles.



- a) With  $\triangle$ ADC, use the Pythagorean Theorem to find an expression for  $h^2$ .
- b) With  $\triangle$ ADB, use the Pythagorean Theorem to find an expression for  $h^2$ .
- c) Use the above two answers to derive the *Law of Cosines*.
- 3) Each of the above two proofs only considered acute triangles. What would be different for the case of an obtuse triangle?
- 4) Which of the two proofs do you think is a better proof? Why?
- 5) Use the *Law of Cosines* to find the indicated variable.

a) 
$$42$$
 b)  $5\theta$ 

6) Find the variable indicated.









f)



## Permutations, Combinations & Probability Test

For each problem, write down at least what you put into your calculator.

#### All problems are worth four points.

1) How many license plates of 4 symbols can be made using 2 letters followed be 2 digits?

2) There are 13 differently colored crayons. How many different ways can you choose four of them?

3) Gail is buying a certain model bike. She has a choice of four different colors, two kinds of handlebars, two kinds of tires, and three different pedals. How many different kinds of bikes are possible?

4) Suppose that a club consists of 8 women and 6 men. In how many ways can a president and a secretary be chosen if the president is to be female and the secretary male?

5) Two random people are chosen from a group. What is the probability that both of them will have a birthday that falls on a weekend?

6) You can order a sandwich with cheese, onion, pickle, lettuce, tomato, or avocado. How many different sandwiches can you order that have three of those items?

 In how many different ways can a<sup>4</sup>b<sup>6</sup> be written without using exponents? (One way is aabbabbbba.) 8) A class of 10 will elect five people: a president, a secretary, and a social committee of three people. In how many ways can it be done?

9) Suppose you are getting dressed in a dark room. In your drawer, you have 4 red socks, 3 blue socks, and 2 brown socks. If you randomly select 2 socks, what is the probability that you will get 2 socks that match?

10) At a party, all 8 guests have their own jacket. At the end of the party, what is the probability of everyone grabbing a jacket randomly and getting their own jacket?

- 11) Two cards are drawn from a 52-card deck. Find the probability that...
  - a) You get a king and a queen.

b) Either both cards are kings or both are hearts.

12) If 24 pieces of sausage are randomly put onto a pizza that is sliced into 8 pieces (with none of the sausages getting cut), what is the probability that your slice will have 3 pieces of sausage?