11th Grade Assignment – Week #11

Group Assignment:

For Tuesday

1) On Saturday, starting at 7am, Bob the monk hiked four miles to a temple at the top of a mountain. After spending the rest of the day and the next night at the temple, he woke the next morning (Sunday), and, at 7am, started his hike back down the mountain, along the same trail as the previous day. The ratio of his walking speed uphill to his speed downhill is 2:5. Both speeds were constant. How far from the temple was he when he was at the exact same place at the same time on the two different days?

For Thursday

- <u>Note</u>: With the below "Crazy Factoring" problem, we are operating under the assumption that x can only be *real numbers*. In that case, a polynomial like $x^2 + 1$ cannot be factored. This is in contrast to the problems we are working on in the workbook (in our *Individual Work*) where we are factoring over the set of *complex numbers*, in which case a polynomial like $x^2 + 9$ can be factored to (x + 3i)(x 3i). Going back and forth between allowing for complex numbers and limiting ourselves to real numbers, is a fairly common practice in mathematics.
- *Crazy Factoring Part II* Here are some laws about factoring polynomials that you may have discovered last time:
 - If n is odd then (x+1) is a factor of (xⁿ + 1).
 - For any n (x-1) is a factor of $(x^n 1)$.
 - If i is a factor of n then (xⁱ 1) is a factor of (xⁿ 1). (For example, x⁷ - 1 must be a factor of x²¹ - 1.)
 - $a^3 \pm b^3 \equiv (a^2 \mp ab + b^2)(a \pm b)$ (You saw this last week.)

The above laws may help you with the following two questions:

- 2) Completely factor the polynomial x¹⁵ 1 <u>Hints</u>: Polynomial long division may be helpful, and x²+x+1 divides evenly into x¹⁰+x⁵+1
- 3) Determine the prime factorization of $2^{60} 1$.

Notes:

- $2^{60}-1 = 1,152,921,504,606,846,975$ (But you don't actually need to know that!)
- The above laws for factoring polynomials are also helpful for this problem.
- You may use a calculator and a table of prime numbers, found at the end of this document.
- To determine if a large number is prime, you only need to try dividing it by all the prime numbers up until the square root of the large number.
- 1047553 is divisible by 1321, which is a prime number.

Individual Work

• Carefully select problems that are helpful for you from **Problem Sets #4-5** (from *Complex Numbers, Part I*).

Problem Set #4

· [2] · [2] ·	Cor	npie
1) Let $c = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$	13)	\mathbf{x}^2
On the previous problem set we found that $c^2 = i$ and $a^8 = 1$. Now find $a^3 a^4 a^5 a^6 a^7$	14)	\mathbf{x}^2
and $C = 1$. Now find C, C, C, C, C .	15)	\mathbf{x}^2
$\frac{\text{Simplify}}{2}$	16)	\mathbf{x}^2
$2) (4i)(5i)$ $2) \boxed{2} \boxed{5}$	17)	\mathbf{x}^4
3) $\sqrt{-20} \cdot \sqrt{-5}$ 4) $(2-i)(5+i)$	Solve	<u>e</u> . (1
5) (6+3i)(2+i)	solut	ions
$5) (0+3i)(2+i) \\ 6) (4-2i)(7+2i)$	18)	\mathbf{x}^2
$\begin{array}{l} (4 - 3i)(1 + 3i) \\ (4 - 3i)(4 + 2i) \\ \end{array}$	19)	\mathbf{x}^2
$\begin{array}{c} (1) & (4-5i)(4+5i) \\ (2) & (2-8i)(2+8i) \\ \end{array}$	20)	\mathbf{x}^2
$8) (3-8i)(3+8i) \\ 0) (2-8i)(2-8i)$	21)	\mathbf{x}^2
$9) (3-8i)(3-8i) \\ 10) (2-8i)^2$	22)	\mathbf{x}^2
$\frac{10}{(2-i)^2}$	23)	\mathbf{x}^2
$\begin{array}{c} 11) (3+5i)^2 \\ 12) (12-i)^3 \end{array}$	24)	\mathbf{x}^2
12) $(10+i)^3$	25)	\mathbf{x}^2
An Important Theorem	26)	\mathbf{x}^4
an important theorem that is now called <i>The</i>	27)	x ⁴
Fundamental Theorem of Algebra. One of the	28)	\mathbf{x}^2
important consequences is that:	29)	\mathbf{x}^2
An n th degree polynomial equation will always have n	30)	3x
roots (some roots may repeat).	31)	(x
Example: Solve $x^2 + 5x - 6 = 0$.	Cirra	(A
Solution: $x = -6, 1$	Give	n un
Example: Solve $x^2 - 6x + 9 = 0$		
Solution: $x = 3$ (double root!)	E' d	g(2
Example: Solve x^2 5 – 0	Find each	
Solution: $x = \pm \sqrt{5}$	32)	f(1
Example: Solve $x^2 + 12 = 0$	33)	g (1
Solution: $x = \pm \sqrt{13}i$	34)	f(g
	35)	g(f
Example: Factor $x^2 - 3x^2 - 28$	36)	f(g
<u>Sol</u> : $(x+\sqrt{7})(x-\sqrt{7})(x+2i)(x-2i)$	37)	g(1
	38)	g(1
	,	

"Complex" Factoring. (All are possible!) -9 +9 - 11 + 5 - 1 For the rest of this unit all complex number should be considered.) -16 = 0+16 = 0-11 = 0+ 11 = 0-6x + 25 = 0+3x + 5 = 0+5x - 14 = 0+5x + 14 = 0 $+4x^2-5=0$ $+7x^{2} + 12 = 0$ +5x - 8 = 0+5x + 8 = 0 $x^2 + 5x + 14 = 0$ $(-2)^3 = 13 + 3(x - 7)$ nese function definitions: $x = 3x^2$ $\mathbf{x}) = 2\mathbf{x} - 7$ <u>h value</u>. 0) 10) g(10)) f(10)) g(x))

- f(x)
- f(x + 3))

Problem Set #5

Simplify.

1) $3x^{4}(5x^{2})$ 2) $3x^4(x^2+5)^2$ 3) (7 + x)(4 + x)4) (7+i)(4+i) $(7 + \sqrt{3})(4 + \sqrt{3})$ 5) 6) (5-i)(3+i)(2+3i)(6+5i)7) $(x-7)^2$ 8) $(7-i)^2$ 9) $(x+4)^{3}$ 10) $(4+i)^3$ 11) 12) [x + (4+3i)][x + (4-3i)][x - (4+3i)][x - (4-3i)]13) $\frac{4}{6+\sqrt{2}}$ 14) $\frac{3+\sqrt{5}}{2+\sqrt{3}}$ 15) $\frac{3}{2+1}$ 16) $\frac{5+i}{3+i}$ 17) $\frac{3+5i}{1-4i}$ 18) "Complex" Factoring. 19) $x^2 - 400$ 20) $x^2 - 200$ 21) $x^2 + 400$ 22) $x^2 + 200$ 23) $x^3 + 4x$ 24) Factor $x^2 - 8x + 25$

25) Where else can you find the answer to the above problem?

Interesting Questions

Answer, or think about, the below questions. Some of them will remain unanswered for a while. (Recall that an n^{th} degree polynomial equation will always have n roots.)

- 26) Find the two square roots...
- a) of 9. (The answer to this question is the solution to $x^2 = 9$.)
- b) of 7.
- c) of -4.
- d) of -5.
- e) of *i*. (Hint: Look at set #3!)
- f) of -i.
- 27) Find the four 4th roots...
 - a) of 1.
 - b) of 16.
 - c) of -1.
- 28) What are the eight 8th roots of 1? (See the previous problem set.)
- 29) What are the three cube roots of 1?

Prime Numbers up to 2000 (in groups of 250)

$\begin{array}{c} 2\\ 3\\ 5\\ 7\\ 11\\ 13\\ 17\\ 19\\ 23\\ 29\\ 31\\ 37\\ 41\\ 43\\ 47\\ 53\\ 9\\ 61\\ 71\\ 73\\ 79\\ 83\\ 89\\ 97\\ 101\\ 103\\ 107\\ 109\\ 113 \end{array}$	$\begin{array}{c} 251\\ 257\\ 263\\ 269\\ 271\\ 277\\ 281\\ 283\\ 293\\ 307\\ 311\\ 313\\ 317\\ 331\\ 337\\ 347\\ 349\\ 353\\ 359\\ 367\\ 379\\ 383\\ 359\\ 367\\ 379\\ 383\\ 389\\ 397\\ 401\\ 409\\ 419\\ 421\\ 431\end{array}$	503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 631 641 643 647 653 659 661 673 677 683 691	751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953	1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213	1259 1277 1279 1283 1291 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1427 1429 1447 1451 1453 1459 1471 1481	$\begin{array}{c} 1511\\ 1523\\ 1531\\ 1543\\ 1549\\ 1553\\ 1559\\ 1567\\ 1571\\ 1579\\ 1583\\ 1597\\ 1601\\ 1607\\ 1609\\ 1613\\ 1619\\ 1621\\ 1627\\ 1663\\ 1667\\ 1663\\ 1667\\ 1669\\ 1693\\ 1697\\ 1699\\ 1709\\ 1721\\ 1723\end{array}$	1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993
97 101 103 107 109 113 127 131 137 139 149 151 157 163 167	397 401 409 419 421 431 433 439 443 449 457 461 463 467 467 479	659 661 673 677 683 691 701 709 719 727 733 739 743	919 929 937 941 947 953 967 971 977 983 991 997	1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249	1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499	1693 1697 1699 1709 1721 1723 1733 1741 1747	1951 1973 1979 1987 1993 1997 1999