10th Grade Assignment – Week #28

Notes: Here are two important things I introduced in Lecture #1:

- $e \approx 2.7182818284590452353602874713527$
- The Continuous Growth Formula is: $\mathbf{P} = \mathbf{P}_0 e^{\mathbf{rt}}$

Individual Work

Group Assignment From Exponential Growth

for Tuesday

- **Problem Set #5**, problems #34-41.
- for Thursday
 - Problem Set #6, problems #30-36.
- Next week's assignment will include a test on the material found in a combination of both the previous Logarithms unit and the current Exponential Growth unit. The (below) Individual Work should help you to prepare for this test.
- From Problem Set #5 (Exponential Growth unit), do problems #1-30 •
- From Problem Set #6 (Exponential Growth unit), do problems #1-26 •
- Finish anything from the "Group Assignment" that your group doesn't complete. ٠

Problem Set #5						
Logs and Growth	16)	log ₂₅ (125)	e)	$\log_4 (2x-3) = -3$	34)	Kate has \$1107.45 in an
Review!	17)	$\log_{8}(\frac{1}{16})$	f)	$4 + 12 \log_{16}(3x + 20) = 13$	account that she started 20 years ago at 2.7% APR	
Calculate each. Use	18)	$\log_4 (\frac{1}{2})$	g)	$17 - 10 \cdot 25^{(3x-1)} = 15$	(cc	ompounded annually).
the Power and Base	19)	log ₉ 1	31)	Expand as much as	Ho	w much money did she
Calculators!	20)	$\log_7 0$	51) nos	Explain as much as	1111	thany put into the account:
1) $64^{-1/2}$	21)	log 0.1	pos	$10g_4(\frac{1}{64y})$		
1) 04 $1/3$	22)	log 10,000	32)	First estimate the answer		
2) 64^{+3}	23)	log ₅ (125•625)	use	your calculator to give an		
3) $64^{1/6}$	24)	$\log_2\left(\frac{1024}{64}\right)$	ans	wer rounded to three	35) A city's population grew from 53 000 to 230 000 over	
4) 64 ⁻²	25)	$\log_3(9^7)$	a)	$10\sigma_2$ 70	a 40-year period. What was	
5) $64^{5/6}$	26)	$\log_3(3^6)$	b)	log ₉ 2	the	e average annual growth
6) $64^{-4/3}$	27)	$\epsilon^{\log_6 17}$	c)	4 ^{2.3}	Tat	
(1) ²	$\frac{27}{28}$	0 Change to log	33)	Calculate by using the		
7) $(\frac{2}{5})$	20)	form:	con No	nmon log table.		
8) $(\frac{3}{2})^{-2}$		$9^{-3/2} = \frac{1}{2}$	a)	log 38.700		
$(\frac{1}{4})^{2}$	20)	Change to	b)	log 0 0000542	36)	Karen's investment
9) $\left(\frac{64}{343}\right)^{2/3}$	29)	exponent form:		10 ^{4.84}	yea	ar period. What was her
10) $\log_4 64$		$\log_7(\frac{1}{2401}) = -4$	() ()	10 ^{-4.6}	ave	erage annual rate of return
11) $\log_4 2$	30)	Solve for X.		5642.308	uu	ring uns period?
12) $\log_4(\frac{1}{16})$	a)	5 ^x = 125	6)	8/10 5		
13) $\log_4(-\frac{1}{4})$	b)	$x^{-1/2} = \frac{1}{2}$	I)	γ12.5		
14) $\log_5(\frac{1}{625})$		$n = \frac{1}{9}$				
15) $\log_{25}(\frac{1}{2})$		$\log_x 023 = 4$ $2^{5X+2} - 1/$				
10, 10, 20 (5)	[u)	$\angle = 1/8$	I			

--- Exponential Growth ---

— Exponential Growth —

- At 3.8% APR, how long does it take an account to go 37)
 - a) from \$800 to \$1600 with annual compounding?
 - b) from \$9000 to \$18,000 with annual compounding?
 - c) from \$800 to \$1600 with quarterly compounding?
 - d) from \$800 to \$1600 with monthly compounding?
 - e) from \$800 to \$1600 with continuous compounding?
- Given an initial deposit of \$4200, an APR of 3.1%, 38) and an eight-year period of time that the money is invested in the account, calculate the ending balance given...
 - a) annual compounding
 - b) quarterly compounding
- 41) Use a calculator to evaluate each.

a)
$$\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$
 b)

- c) monthly compounding
- d) daily compounding
- e) continuous compounding
- 39) Twelve years ago, Jeff purchased a guitar on his credit card for \$580, but has not made any payments on this debt. How much does he now owe if the credit card company charges 8.5% APR compounded monthly?
- 40) John put \$3200 into a savings account at 1.8% APR compounded continuously. How long will it take for the account...
 - a) to triple?
 - b) to reach \$5000?

Problem Set #6

Logs and Growth Review Sheet!

Calculate each. Use the *Power* and Base Tables, if needed. No Calculators!

- 36-2 1)
- $36^{\frac{1}{2}}$ 2) 36^{-1/2}
- 3) $25^{-3/2}$
- 4)
- $\left(\frac{3}{4}\right)$ 5)
- $\left(\tfrac{25}{36}\right)^{1/2}$ 6)
- $\left(\frac{8}{27}\right)^{-1}$ 7)
- 8) $log_{5}(25)$
- 9) $log_{25}(5)$
- 10) $log_5(-25)$
- 11) $\log_5 1$

13) $\log_8\left(\frac{1}{8}\right)$

12)

log₈ 512

- $\log_8 2$ 14)
- 15) $\log_{8}(\frac{1}{16})$
- 16) log₈ 16
- 17) log 1000
- log 0.001 18)
- 19) $\log_2(128.32)$
- $\log_6(\frac{46656}{1296})$ 20)
- 21) $\log_5(625^8)$
- 22) $\log_{13}(13^4)$
- 9^{log,3} 23)
- 24) Change to log form: $5^{-3} = \frac{1}{125}$

- Change to exponent form: 25) $\log_4 32 = \frac{5}{2}$
- 26) Solve for X.
 - a) $x^3 = 64$
 - b) $7^{X} = \frac{1}{49}$
 - c) $\log_x 4 = \frac{1}{2}$
 - d) $3^{2X-6} = 81$
 - e) $\log_8 (3x+5) = -\frac{2}{3}$
 - f) $-4+5 \log_{10}(50x-500) = 11$
 - g) $11 + \frac{1}{4} 2^{(\frac{1}{2}x-2)} = 13$

- 27) Condense. (i.e., rewrite as one logarithm): $5\log_6 x \log_6 y \log_6 z$
- 28) First estimate the answer to one decimal place, then use your calculator to give an answer rounded to three significant figures.
 - a) log₅ 800
 - b) $\log_5 0.3$
 - c) 5^{-3.2}
- 29) Calculate by using the common log table. No calculators!
 - a) log 8350
 - b) log 0.0077
 - c) 10^{6.3}
 - d) 10^{-3.1}
 - e) 637,100,000÷54,800
 - f) 17.3⁵
- 30) A town's population grew from 7,540 to 17,008. How long did this take if the average annual growth was 3.6%?
- 31) A bank account increases by 5.9% annually for 13 years. What is the percentage increase over the 13-year period?
- 32) The enrollment of a school is increasing by 9% per year. If the enrollment is currently 300 and that growth rate continues indefinitely, then what will the enrollment be...
 - a) after 20 years?
 - b) after 100 years?
- 33) A country's population is growing at 3% annually. How long does it take the population...
 - a) to double?b) to increase by 30%?
 - c) to go from 26 million to 200 million?

- 34) If a country has a 1.2% annual growth rate, by what percentage does it grow every decade? Every century?
- 35) John put \$3200 into a savings account at 1.8% APR compounded continuously. What is his balance after nine years?
- 36) Joe put \$3200 into a savings account where the interest is compounded continuously. After nine years, the balance is \$3900.68. What was the APR of the account?
- 37) Arie's birth weight was 8 lbs, 13 oz. Then, after one month, he weighed 10 lbs, 14 oz. (This is fairly typical weight gain for the first month.)
 - a) By what percentage did his weight increase in this first month?

Assuming that this growth rate continues, calculate his weight at...

- b) Two months old.
- c) Six months old.
- d) One year old.
- e) Two years old.
- f) Four years old.
- g) Six years old.
- h) Eight years old.
- i) Ten years old.
- j) Fifteen years old.
- k) Twenty years old.
- 1) Twenty-five years old.

<u>Note</u>: The weight of the earth is approximately $6.6 \cdot 10^{21}$ tons.