10th Grade Assignment – Week #24

Individual Work Finish anything from the "Group Assignment" that your group doesn't complete.

Group Assignment

for Tuesday

- What we know so far. Make sure everyone understands:
 - We used the 30-60-90 special triangle to determine the values of the sin 30° and cos 30°.
 - From there, we worked upwards on the table to calculate the sine and cosine of half that angle by using **Ptolemy's Half Angle Formula** and the **Pythagorean Trigonometric Identity** (both shown below). The resulting *Table of Half Angles* is found at the right.

<u>Ptolemy's Half-Angle Formula</u> $sin(\frac{1}{2}\alpha) = \sqrt{\frac{1}{2} - \frac{1}{2}cos\alpha}$ **<u>Pythagorean Trigonometric Identity</u>** $sin^{2}(\alpha) + cos^{2}(\alpha) = 1$

- How did we then get the sin 1° from our calculation of sin (¹⁵/₁₆)? Well, that was rather tricky, but the *Ratio of Sines Table* and the law (below, in the box) helped us. From this, we were able to say that sin 1° ≈ ¹⁶/₁₅ sin(¹⁵/₁₆) ≈ ¹⁶/₁₅ · (0.016355) ≈ 0.0174525.
- Then we used the **Pythagorean Trigonometric Identity** to calculate the **cos 1**°.
- <u>Do this now</u>: Starting with the values for sin 1° and cos 1° shown on the above table, calculate the values for: sin ¹/₂° cos ¹/₂° sin ¹/₄° cos ¹/₄°
- <u>New Formulas</u>: Ptolemy then created his sum and difference formulas (see below) in order to fill out the rest of his table. Go ahead now and fill out the rest of the (partial) table, shown on the right. The below example may help get you started.

<u>Ptolemy's Sum and Difference Formulas</u> $\frac{sin(\beta - \alpha) = sin(\beta)cos(\alpha) - sin(\alpha)cos(\beta)}{cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)}$

- **Example:** Since we know the trig values for $7\frac{1}{2}^{\circ}$ and 1° , we can use the above formula to find $\sin(6\frac{1}{2}^{\circ})$. $sin(\beta - \alpha) = sin(\beta)cos(\alpha) - sin(\alpha)cos(\beta)$. $\beta = 7\frac{1}{2}$, $\alpha = 1$ $sin(7\frac{1}{2}^{\circ} - 1^{\circ}) = sin(7\frac{1}{2}^{\circ}) cos(1^{\circ}) - sin(1^{\circ}) cos(7\frac{1}{2}^{\circ})$ $sin(6\frac{1}{2}^{\circ}) \approx (0.130526)(0.999848) - (0.0174524)(0.991445)$ $sin(6\frac{1}{2}^{\circ}) \approx 0.113203$
- *for Thursday*: Do **Problem Set #8**, problems #2-6. Use the full *Table of Sines and Cosines* (below) instead of your calculator.

Table of Half Angles			
a	sin(a)	cos(a)	
10	0,0174525	0.999848	
15/16	0.016355	0.9998662	
13/6"	0.032714	0.499 465	
3="	0.0454031	0.197859	
720	0.130526	0.991 445	
150	0.2.588194	0.965925	
30°	0.5	0,86602	

7	×	Sin y	STH X	Sinx
2.08	600	0.446	0.966	1
10"	45"	1	0.707	1.414
0'	300	0.966	0.5	1.73
2°	1*	0.1745	0.034 90	1.99970

Partial Table of Sines and Cosines				
α	sin(α)	cos(a)		
0°				
(¼°	0.00436331	0.999991)		
1⁄2°	0.00872654	0.999962		
1°	0.0174524	0.999848		
1½°				
2°				
2½°				
3°				
3½°				
(3¾°	0.0654031	0.997859)		
4°				
4½°				
5°				
5½°				
6°				
6½°				
7°				
7½°	0.130526	0.991445		
8°				

--- Trigonometry -- Part I ----

Table of Sines and Cosines

α	sin(a)	<i>cos</i> (a)	α	sin(a)	cos(a)
0.0°	0.00000	1.00000	22.5	0.38268	0.92388
0.5°	0.00873	0.99996	23.0°	0.39073	0.92050
1.0°	0.01745	0.99985	23.5	0.39875	0.91706
1.5°	0.02618	0.99966	24.0°	0.40674	0.91355
2.0°	0.03490	0.99939	24.5	0.41469	0.90996
2.5°	0.04362	0.99905	25.0°	0.42262	0.90631
3.0°	0.05234	0.99863	25.5	0.43051	0.90259
3.5°	0.06105	0.99813	26.0°	0.43837	0.89879
4.0°	0.06976	0.99756	26.5°	0.44620	0.89493
4.5°	0.07846	0.99692	27.0°	0.45399	0.89101
5.0°	0.08716	0.99619	27.5	0.46175	0.88701
5.5°	0.09585	0.99540	28.0°	0.46947	0.88295
6.0°	0.10453	0.99452	28.5°	0.47716	0.87882
6.5°	0.11320	0.99357	29.0°	0.48481	0.87462
7.0°	0.12187	0.99255	29.5°	0.49242	0.87036
7.5°	0.13053	0.99144	30.0°	0.50000	0.86603
8.0°	0.13917	0.99027	30.5	0.50754	0.86163
8.5°	0.14781	0.98902	31.0°	0.51504	0.85717
9.0°	0.15643	0.98769	31.5°	0.52250	0.85264
9.5°	0.16505	0.98629	32.0°	0.52992	0.84805
10.0°	0.17365	0.98481	32.5	0.53730	0.84339
10.5°	0.18224	0.98325	33.0°	0.54464	0.83867
11.0°	0.19081	0.98163	33.5°	0.55194	0.83389
11.5°	0.19937	0.97992	34.0°	0.55919	0.82904
12.0°	0.20791	0.97815	34.5	0.56641	0.82413
12.5°	0.21644	0.97630	35.0°	0.57358	0.81915
13.0°	0.22495	0.97437	35.5°	0.58070	0.81412
13.5°	0.23345	0.97237	36.0°	0.58779	0.80902
14.0°	0.24192	0.97030	36.5	0.59482	0.80386
14.5°	0.25038	0.96815	37.0°	0.60182	0.79864
15.0°	0.25882	0.96593	37.5	0.60876	0.79335
15.5°	0.26724	0.96363	38.0°	0.61566	0.78801
16.0°	0.27564	0.96126	38.5	0.62251	0.78261
16.5°	0.28402	0.95882	39.0°	0.62932	0.77715
17.0°	0.29237	0.95630	39.5	0.63608	0.77162
17.5°	0.30071	0.95372	40.0	0.64279	0.76604
18.0°	0.30902	0.95106	40.5	0.64945	0.76041
18.5°	0.31730	0.94832	41.0°	0.65606	0.75471
19.0°	0.32557	0.94552	41.5	0.66262	0.74896
19.5°	0.33381	0.94264	42.0°	0.66913	0.74314
20.0°	0.34202	0.93969	42.5	0.67559	0.73728
20.5°	0.35021	0.93667	43.0°	0.68200	0.73135
21.0°	0.35837	0.93358	43.5	0.68835	0.72537
21.5°	0.36650	0.93042	44.0	0.69466	0.71934
22.0°	0.37461	0.92718	44.5°	0.70091	0.71325

α	sin(a)	cos(a)	_α	sin(a)	cos(a)
45.0°	0.70711	0.70711	67.5	0.92388	0.38268
45.5°	0.71325	0.70091	68.0°	0.92718	0.37461
46.0°	0.71934	0.69466	68.5	0.93042	0.36650
46.5°	0.72537	0.68835	69.0°	0.93358	0.35837
47.0°	0.73135	0.68200	69.5°	0.93667	0.35021
47.5°	0.73728	0.67559	70.0	0.93969	0.34202
48.0°	0.74314	0.66913	70.5	0.94264	0.33381
48.5°	0.74896	0.66262	71.0	0.94552	0.32557
49.0°	0.75471	0.65606	71.5	0.94832	0.31730
49.5°	0.76041	0.64945	72.0	0.95106	0.30902
50.0°	0.76604	0.64279	72.5	0.95372	0.30071
50.5°	0.77162	0.63608	73.0°	0.95630	0.29237
51.0°	0.77715	0.62932	73.5	0.95882	0.28402
51.5°	0.78261	0.62251	74.0°	0.96126	0.27564
52.0°	0.78801	0.61566	74.5	0.96363	0.26724
52.5°	0.79335	0.60876	75.0°	0.96593	0.25882
53.0°	0.79864	0.60182	75.5	0.96815	0.25038
53.5°	0.80386	0.59482	76.0°	0.97030	0.24192
54.0°	0.80902	0.58779	76.5	0.97237	0.23345
54.5°	0.81412	0.58070	77.0°	0.97437	0.22495
55.0°	0.81915	0.57358	77.5°	0.97630	0.21644
55.5°	0.82413	0.56641	78.0°	0.97815	0.20791
56.0°	0.82904	0.55919	78.5	0.97992	0.19937
56.5°	0.83389	0.55194	79.0°	0.98163	0.19081
57.0°	0.83867	0.54464	79.5	0.98325	0.18224
57.5°	0.84339	0.53730	80.0	0.98481	0.17365
58.0°	0.84805	0.52992	80.5	0.98629	0.16505
58.5°	0.85264	0.52250	81.0	0.98769	0.15643
59.0°	0.85717	0.51504	81.5	0.98902	0.14781
59.5°	0.86163	0.50754	82.0	0.99027	0.13917
60.0°	0.86603	0.50000	82.5	0.99144	0.13053
60.5°	0.87036	0.49242	83.0	0.99255	0.12187
61.0°	0.87462	0.48481	83.5	0.99357	0.11320
61.5°	0.87882	0.47716	84.0	0.99452	0.10453
62.0°	0.88295	0.46947	84.5	0.99540	0.09585
62.5°	0.88701	0.46175	85.0°	0.99619	0.08716
63.0°	0.89101	0.45399	85.5	0.99692	0.07846
63.5°	0.89493	0.44620	86.0°	0.99756	0.06976
64.0°	0.89879	0.43837	86.5	0.99813	0.06105
64.5°	0.90259	0.43051	87.0	0.99863	0.05234
65.0°	0.90631	0.42262	87.5	0.99905	0.04362
65.5°	0.90996	0.41469	88.0	0.99939	0.03490
66.0°	0.91355	0.40674	88.5	0.99966	0.02618
66.5°	0.91706	0.39875	89.0	0.99985	0.01745
67.0°	0.92050	0.39073	89.5	0.99996	0.00873
			90.0	0 1.00000	0.00000

Problem Set #8

- 1) Write down every trigonometric formula and identity that you have seen in this unit, and state why it would be useful.
- 2) Find the variable indicated.

$$1) \qquad \overbrace{70^{\circ} \ 60^{\circ}}^{\times} 1.6$$

Word Problems with Trig

- 3) An 18-foot ladder is placed on level ground up against a building. If the angle of inclination of the ladder is 72°, then how far away from the side of the building is the foot of the ladder?
- 4) Jill is standing 200 feet from the base of a tall building. If the angle of inclination from where she is standing to the top of the building is 68°, then how tall is the building?
- 5) A rhombic dodecahedron is a polyhedron with 12 congruent faces that are rhombuses.

Within each rhombus, the ratio of the length of an edge to the shorter diagonal is $\sqrt{3}$:2.

- a) Find the measures of the angles within the rhombus.
- b) Find the ratio of the length of the longer diagonal to the shorter diagonal in the rhombus.
- 6) Find the area of this triangle. (This problem also appeared 1 in the *Mensuration* unit.)

Calculating the Height of a Mountain

In 1852, Radhanath Sikdar discovered that "Peak XV" was the highest in the world. The General Surveyor of India, Captain Andrew Waugh, then led an effort to calculate the height of this mountain as accurately as possible. Several readings, all taken from the plains of India, were averaged. In 1856 it was announced that the height of this mountain, which Waugh named after his predecessor, Sir George Everest, was 29,002 feet. This measurement was within 35 feet!

How could this have been done? [In place of the following exercise, it may be best to find a nearby mountain, hill, or tall building and try to calculate its height in a similar fashion. This would require the use of a sextant in order to measure the angle of inclination.]

7) Mount Katherine rises up from the western shore of Moose Lake, which has an elevation of 1723 feet. With a sextant, Jack measured that the angle of inclination from the western end of the lake to the peak of the mountain was

 $10^{\circ}43'$ (which is $10\frac{43}{60}$), and from the eastern shore it was $4^{\circ}16'$. The distance between these two locations (where the angle of inclination measurements were taken) is 6.32 miles.

(From the peak of the mountain the whole of the lake can be seen. The mountain's peak and the two points of measurement all fall in a straight line on a map.

You may use the trig buttons on your calculator.)

- a) What is the elevation of Mount Katherine?
- b) How far would a map show that the distance is from the western shore to the peak, as a straight (horizontal) line?

