9th Grade Assignment – Week #31

Group Assignment:

For Tuesday

• Together, do as many of the problems as you can from **Possibility & Probability – Problem Set #1**.

For Thursday

• Together, do as many of the problems as you can from **Possibility & Probability – Problem Set #2**.

Individual Work

- Do Logarithms Problem Set #5.
- Prepare for the Year-End Test (which will be part of next week's assignment). Some things to keep in mind:
 - Finish the **Year-End Review Practice** sheets that I gave you last week.
 - Look over old tests from earlier in the year.
 - Note that the Year-End Test will not include these topics:
 - Descriptive Geometry
 - Possibility & Probability
 - Topics that only appeared in the Mid-Year Review unit.
 - The quadratic formula and al-Khwarizmi's work.

Calculate each. Use the *Power and Base Tables*, if needed. ** Indicates that answers should be given in scientific notation.

- 1) 36^2
- 2) 36^{1/2}
- 3) 36⁻²
- 4) 36^{-1/2}
- 5) $1024^{1/5}$
- 6) $1024^{-1/5}$
- 7) **16,000,000,000,000²
- 8) **16,000,000,000,000^{1/4}
- 9) ****16,000,000,000**^{5/2}
- 10) **16,000,000,000,000 $^{-3/4}$
- 11) log₉ 729
- 12) $\log_9(\frac{1}{729})$
- 13) log₆ 1296
- 14) $\log_3(\frac{1}{729})$
- 15) $\log_9(\frac{1}{3})$
- 16) $\log_3(\frac{1}{9})$
- 17) log₈ 16
- 18) log₁₆ 8
- 19) log₅ (-25)
- 20) $\log_{37}\left(\frac{1}{37}\right)$
- 21) $\log_{25}\left(\frac{1}{125}\right)$
- 22) $\log_{81}(\frac{1}{27})$

Solve. It may help to rewrite the equation in a different form (e.g. exponential or log form). Use a calculator only if necessary.

23) $5^4 = x$

24)
$$5^{X} = \frac{1}{125}$$

25)
$$x^4 = 625$$

- 26) $x^3 = 30$
- 27) $5 \cdot 4^{3x} = 5120$
- 28) $\log_x 64 = 6$
- 29) $\log_x 6 = 2$
- 30) $\log_4 x = 3$
- 31) $\log_2 32 = x$
- 32) $\log_5 5x = 3$
- $33) \quad 4+5 \log_3(2x+7) = 24$
- $34) \quad \frac{1}{9} \, 6^{3x-5} 6 = 18$
- 35) $8+3 \log_5(2x-7) = 17$
- 36) A rectangular garden is twice as long as it is wide. By increasing the length and width of the garden by 2 feet each, its area is increased by 40 ft². Find the dimensions of the original garden.

-- Possibility & Probability --

Problem Set #1

Section A

- 1) Bob's Bikes makes bikes with 2 types of frames, 3 handle bar styles, and in colors red, yellow, green, black, or white. How many different bikes can they make?
- 2) Paul's Pizza offers 3 choices of salad, 20 kinds of pizza, and 4 different desserts. How many different 3-course meals can be ordered?
- 3) How many 7-digit phone numbers are possible? (The first digit cannot be 0 or 1.)
- 4) In how many ways can 8 people be lined up in a row?
- 5) A license plate consists of 3 letters followed by 3 digits (e.g., XBB022). How many different plates could be issued?
- 6) How many ways can four different roles in a play be assigned from a group of 14 actors?
- 7) In how many ways can a president and a secretary be chosen from a group of 6 people?
- 8) In a 6-horse race...
 - a) how many different orders of finishing are there?
 - b) how many possibilities are there for the first 3 places?
- 9) A character can be either a letter or a digit. (Thus, there are 36 different characters.)
 - a) How many possible three-character codes are there?
 - b) How many possible three-character codes have different characters and a digit as the first character?

Section B

- 10) How many license plates are possible that have 2 digits and 2 letters (in any order)?
- 11) Using the letters of the word EQUATION, how many

4-letter words (which don't have to spell anything) can be formed (without repetition)...

- a) that start with T?
- b) that start and end with a consonant?
- c) that have only one vowel?
- d) with all the vowels posi-tioned furthest to the right?

Problem Set #2

Section A

- 1) Calculate
- (a) 6! (b) ${}_{5}P_{5}$ (c) ${}_{5}P_{3}$ (d) ${}_{5}P_{1}$
- (e) ${}_{5}C_{5}$ (f) ${}_{5}C_{3}$ (g) ${}_{5}C_{1}$ (h) ${}_{5}C_{0}$
- 2) John has 4 ties, 6 shirts, and 3 pairs of pants. How many different outfits can he wear? Assume that he wears one of each kind of article.
- 3) How many 7-digit telephone numbers can be created if the first digit must be 4, the second must be 7, and the third must be 5 or 6?
- 4) In how many ways can the letters of the word ...a) "FRIDAY" be arranged?
 - b) "LESSON" be arranged?
- 5) How many three-digit numbers are there that use only the digits 0,1,2,3,4? (You can't start with 0.)
- 6) In how many ways can first, second, and third prizes be awarded in a competition in which there are 14 entries?
- 7) From a group of 14 people, how many ways can a committee of 3 be chosen?
- 8) There are 13 different colored crayons. How many different ways can you choose four of them?
- 9) You have a pack of 13 different colored pencils. You wish to color these 4 squares in 4 different colors. In how many different ways can you do it?

- 10) In how many ways can a committee...
 - a) of 3 be selected from a group of 8?
 - b) of 5 be selected from a group of 8?
- 11) One marble is drawn at random from a bag containing 4 white, 5 red, and 6 green marbles. Find the probability that...
 - a) it is white.
 - b) it is red or green.
 - c) it is not white.
- 12) Three coins are tossed. Find the probability of...
 - a) getting all heads.
 - b) getting exactly 2 heads.

Section B

- 13) In a group of 10 people, each person shakes hands with everyone else once. How many handshakes are there?
- 14) There are 36 numbers on a combination lock. To open the lock you must know the three correct numbers (which are all different) in the correct order. How long would it take a thief to try all possible combinations if it takes 10 seconds to try each possibility?