8th Grade Assignment – Week #30

Individual Work

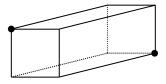
• The Algebra Test is at the end of this document. Please take it by the end of this week.

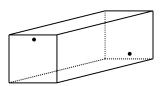
Group Assignments:

For Tuesday (I will give answers to the below problems during Wednesday's lecture.)

- 1) *Number Magic*. During Monday's lecture, I asked you to choose two 2-digit numbers, and multiply them together to get a first answer. Then you were to reverse the digits of the original 2-digit numbers, and then multiply these together to get a second answer. Lastly, you were to find the difference (subtract) of these two answers to get a final result. The results given in the lecture were: 1287, 2079, 4950, 2376, 6336, 2970. You should also add a few of your own results. <u>Questions</u>:
 - What do you notice about all the final numbers?
 - What is the Greatest Common Factor of all the numbers?
- 2) Catching Up.

Jeff leaves home jogging at a rate of 5 km/h. One hour later, his mother drives after him at a rate of 60 km/h. After how much time (exactly!) will she catch up to him?


3) *Card Trick.* Come up with an explanation for why the "magic card" is always in the 7th position.


For Thursday

1) *Factors – Part II*. Fill out the below table and see if you can discover the shortcut for determining how many factors a given number has.

Number	Prime Factorization	Number of Factors
343	7 ³	4
25	5 ²	
		7
		13
36	$2^2 \cdot 3^2$	
100	$2^2 \cdot 5^2$	
48	$2^{4} \cdot 3$	
42	2.3.7	
72	$2^{3} \cdot 3^{2}$	
3,969	$3^4 \cdot 7^2$	
65,000	$2^3 \cdot 5^4 \cdot 13$	

- 2) a) Two ants are at diametrically opposite corners on the outside surface of a box that measures 24x24x60 cm. What is the length of the shortest path, from one ant to the other? (The ants must walk along the outside of the box.)
 - b) Same box, but this time one ant is on the front square wall of the box, equally far from each of the rectangular side walls and 2 cm from the ceiling. The other ant is diametrically opposite i.e., on the back wall, 2 cm up from the floor, and equally far from the side walls. What is the length of the shortest path, from one ant to the other?

Algebra Test

Simplify. (2 points each) -7 - 51) 8 + X = 311) 2) (-6)(-2) 3) $12 - 3 \cdot 5$ 4) -5 + -3 - -2 - +75) $5x^4 + 2x^4$ 6) $6x^3 + 3x^4$ 13) $\frac{3}{7} = \frac{5}{x}$ 7) $(y^3)^4$ 8) $x^4 \cdot x^2$ 9) 4X + 3 + 5X - 814) $\frac{2}{3}X = 8$ Evaluate the expression given X = 3; Y = 5; Z = -410) $Y^2 - 3Z + 4X$

Solve each equation by getting X alone. *Except* for #13, you must show what is done to each side. (2 points each)

12)
$$-5x = 20$$

Solve each equation by getting X alone.
You must show what is done to each side.
(4 points each)
15)
$$4X - 3 = 7X - 18$$

18) $4 - 2X + 9X = 27 - 3X - 3$
16) $10 - 2(X - 3) = 6X - 5 - X$