Proofs of the Three Trigonometric Laws

Law of Sines

Note: This appears as an exercise in the $10th$ grade workbook, in the unit *Intro to Trigonometry.*

1. An alternative definition of *Sine* involves an angle inscribed in a circle, and the subtended chord. $sin(\alpha)$ then answers the question: "*The chord is what proportion of the diameter*?"

It is then written as $sin(\alpha) = \frac{chord}{diameter}$

2. Given any $\triangle ABC$, we can circumscribe a circle around it.

sin B

×

 $#3$

 $\hat{\mathbf{x}}$

3. Let d be the diameter of the circle. It follows then that:

$$
\sin(A) = \frac{a}{d} \quad \text{and} \quad \sin(B) = \frac{b}{d}
$$
\n
$$
\text{Therefore} \quad \mathbf{d} = \frac{a}{\sin(A)} = \frac{b}{\sin(B)} \quad \text{and} \quad \boxed{\frac{a}{b} = \frac{\sin A}{\sin B}}
$$

Law of Cosines

Note: This appears as an exercise in the $11th$ grade workbook, in the unit *Trigonometry Part II*.

- 1. Given acute triangle, $\triangle ABC$, attach squares to the sides of the triangle, draw altitudes to the sides of the triangle, and label everything as shown below.
- 2. Using $\triangle ABX$, we see that

 $AX = c \cdot cos(A)$. Similarly, we have

 $CX = a \cdot \cos(C)$ $BY = c \cdot cos(B)$ $CY = b \cdot cos(C)$ $AZ = b \cdot cos(A)$

 $BZ = \mathbf{a} \cdot \cos(B)$

 \ast_{G} $*_{5}$ $\#$ $\!$

- 3. The areas of the six rectangles are: $rect#3 = rect#2 = ab \cdot cos(C)$ $rect#5 = rect#4 = ac \cdot cos(B)$ $rect\#6 = rect\#1 = bc \cdot cos(A)$
- 4. The final steps are then:

 $rect#5 + rect#6 + rect#3 = rect#1 + rect#2 + rect#4$ c^2 + rect#3 = b^2 + rect#4 c^2 + rect#3 + rect#3 = b^2 + rect#4 + rect#3 $c^2 + 2(\text{rect} \# 3) = b^2 + a^2$

 $c^2 = a^2 + b^2 - 2ab \cdot \cos(C)$

Law of Tangents

Note: This appears as an exercise in the $11th$ grade workbook, in the unit *Trigonometry Part II.*

1. Given any triangle, ABC, we extend side b upward by the length of side a up to point R. Points P and Q are found by measuring a distance of b away from point C. Lines are then joined as shown in the drawing. 2. PQ is parallel to RB $[\Delta$ Prop. Th. converse]

B

The angle measures are as follows:

- 3. $\angle ACQ = 180^\circ \angle A \angle B$ $\alpha = \angle COA = \angle TQB$ $\angle PCQ = \angle A + \angle B = \alpha + \angle CQA = 2\alpha$ $\alpha = \frac{1}{2}(\angle A + \angle B)$
- 4. $\alpha = \frac{1}{2}(\angle A + \angle B) = \angle CQA = \theta + \angle B$ $\frac{1}{2}\angle A + \frac{1}{2}\angle B = \theta + \angle B$ $\theta = \frac{1}{2}(\angle A - \angle B)$
- 5. $\angle PCQ + \angle CPQ + \angle PQC = 180^\circ$ $2\alpha + 2 \angle PQC = 180^{\circ} \rightarrow \alpha + \angle PQC = 90^{\circ}$ $\angle AQP = 90^\circ = \angle ATR$
- 6. Let $x = AT$. Using $\triangle ATB$ and $\triangle ATR$, we get $TB = x \cdot \tan(\theta)$ and $TR = x \cdot \tan(\alpha)$
- 7. The last few steps are then: $\triangle TQB \sim \triangle PQA \sim \triangle RTA$ $TB:OB = TR:AR$ $x \cdot \tan(\theta) : (a-b) = x \cdot \tan(\alpha) : (a+b)$ $x \cdot \tan(\theta)$: $x \cdot \tan(\alpha) = (a-b)$: $(a+b)$

where $\frac{1}{2}(A+B)$ is the average of $\angle A$ and $\angle B$.

and ½(A−B) is the difference between this average and either of the two angles.