Archimedes' Calculation of π – as Archimedes did it¹ **Circumscribed Polygons**

Getting Started

- With the above drawing, AC, AD, AE, AF, and AG are the <u>half-sides</u> of the circumscribed 6-gon, 12-gon, 24-gon, 48-gon, 96-gon, respectively.
- AB is a diameter of the circle, and O is the center. OA is perpendicular to CZ.
- Our goal is to find the ratio of OA:AG. We can then find the ratio of the perimeter of the 96-gon to the diameter of the circle.

Calculating the 6-gon (hexagon)

- Because $\triangle AOC$ is a 30°-60°-90° triangle, we know that $OA:AC = \sqrt{3}:1$ and OC:AC = 2:1
- Archimedes approximates $\sqrt{3}$ as $\frac{265}{153}$, which is too small by 0.0014%. We can then say:

OA:AC>265:153 and OC:AC=306:153

Calculating the 12-gon

- With $\triangle OAC$, $\angle AOC$ is bisected by OD.
- OC:OA = CD:AD [$\Delta \angle$ Bisector Th.; *Elem.* VI-3]
- (OC+OA):OA = (CD+AD):AD [Elements V-18]
- (OC+OA):OA = AC:AD
- (OC+OA):AC = OA:AD [Elements V-16]
- OA:AD = (OC+OA):AC
- By using the ratios from the 6-gon, we get: OA:AD > (306+265):153

OA:AD > 571:153

(The 12-gon is continued on next column...)

- $OD^2 = OA^2 + AD^2$ [Pythagorean Theorem]
- $OD^2: AD^2 = (OA^2 + AD^2): AD^2$
- $OD^2: AD^2 > (571^2 + 153^2): 153^2$
- $OD^2: AD^2 > 349450: 23409$

OD:AD > $591\frac{1}{8}$: 153

Calculating the 24-gon

- We repeat the same process, but leave out the smaller steps this time.
- With $\triangle OAD$, $\angle AOD$ is bisected by OE.
- OD:OA = DE:AE [$\Delta \angle$ Bisector Th.; *Elem.* VI-3]
- OA:AE = (OD+OA):AD > (591 $\frac{1}{8}$ + 571):153 OA:AE > 1162 $\frac{1}{8}$:153
- $OE^2: AE^2 = (OA^2 + AE^2): AE^2$ $OE^2: AE^2 > (1162^{1/8} + 153^2): 153^2$ $OE^2: AE^2 > 1350534^{33}_{54}: 23409$

OE:AE > $1172\frac{1}{8}$: 153

Calculating the 48-gon (with even fewer steps!)

- OA:AF = (OE+OA):AE > $(1172\frac{1}{8} + 1162\frac{1}{8})$: OA:AF > 2334¹/₄: 153
- $OF^2: AF^2 = (OA^2 + AF^2): AF^2$, which leads to: $OF: AF > 2339^{1/4}: 153$

Calculating the 96-gon (finally!)

• OA:AG = (OF+OA):AF > $(2339^{1/4} + 2334^{1/4})$: 153 OA:AG > 4673^{1/2}: 153 Our Goal!!

Calculating an Upper Bound for π

- Let P = Perimeter of 96-gon, and Let D = Diameter of circle.
- From above: AG:OA < 153 : 4673¹/₂
- $\pi: 1 < P: D = 192 \cdot AG: 2 \cdot OA = 96 \cdot AG: OA$
- $\pi: 1 < 96 \cdot 153 : 4673\frac{1}{2} = 14688 : 4673\frac{1}{2} < 3\frac{1}{7} : 1$

 $\pi < 3\frac{1}{7}$

¹ Heath, T.L., *The Works of Archimedes*. New York: Dover Publications, 2002. pp 93-98. This is the famous third theorem from Archimedes' work titled, *The Measurement of a Circle*.

- Theorems and Proofs -

Archimedes' Calculation of π – as Archimedes did it **Inscribed Polygons**

Getting Started

- With the above drawing, the sides of the inscribed polygons, where the number of sides is 6, 12, 24, 48, 96, are given by BC, BD, BE, BF, BG, respectively.
- AB is a diameter of the circle, and O is the center.
- Our primary goal is to find the ratio of AB:BG. We can then find the ratio of the perimeter of the 96-gon to the diameter of the circle.

Calculating the 6-gon (hexagon)

- Because $\triangle ABC$ is a 30°-60°-90° triangle, we know that AC:BC = $\sqrt{3}$:1 and AB:BC = 2:1
- Archimedes approximates $\sqrt{3}$ as $\frac{1351}{780}$, which is too large by 0.0000270. We can then say:

is too large by 0.000027%. We can then say:

AC:BC < 1351:780 and AB:BC = 1560:780

Calculating the 12-gon

- With $\triangle ABC$, $\angle BAC$ is bisected by AD.
- AC:Cd = AB:Bd $[\Delta \angle \text{Bisector Th.}; Elem. \text{VI-3}]$
- AC:Cd = AB:Bd = (AC+AB):(Cd+Bd) [*Elements* V-12]
- AC:Cd = AB:Bd = (AC+AB):BC
- AC:Cd = AD:BD [because \triangle ACd ~ \triangle ADB]
- AD:BD = (AB+AC):BC [from above steps]
- By using the ratios from the 6-gon, we get: AD:BD < (1560 + 1351): 780

AD:BD < 2911 : 780

- $AB^2 = AD^2 + BD^2$ [Pythagorean Theorem]
- AB²: BD² = (AD² + BD²) : BD² Using the above ratio, we get: AB²: BD² < (2911² + 780²) : 780² AB²: BD² < 9082321 : 608400
 AB:BD < 3013³/₄ : 780

Calculating the 24-gon

- We repeat the same process, but leave out the smaller steps this time.
- With $\triangle ABD$, $\angle BAD$ is bisected by AE.
- AD:De = AB:Be $[\Delta \angle$ Bisector Th.; *Elem.* VI-3]
- AE:BE = (AB+AD):BD < (3013³/₄ + 2911): 780

AE:BE < $5924\frac{3}{4}$: 780, which reduces to: AE:BE < 1823: 240

• $AB^2: BE^2 = (AE^2 + BE^2): BE^2$ $AB^2: BE^2 < (1823^2 + 240^2): 240^2$ $AB^2: BE^2 < 3380929: 57600$

AB: BE < $1838\frac{9}{11}$: 240

Calculating the 48-gon (with even fewer steps!)

- With $\triangle ABE$, $\angle BAE$ is bisected by AF.
- AF:BF = (AB+AE):BE < $(1838\frac{9}{11}+1823)$: 240 AF:BF < $3661\frac{9}{11}$: 240, which reduces to:

AF:BF < 1007 : 66

• $AB^2: BF^2 < (1007^2 + 66^2): 66^2$ $AB^2: BF^2 < 1018405: 4356$

AB : **BF** < $1009\frac{1}{6}$: 66

Calculating the 96-gon (finally!)

- With $\triangle ABF$, $\angle BAF$ is bisected by AG.
- AG:BG = (AB+AF):BF < $2016\frac{1}{6}$: 66

AG:BG < $2016\frac{1}{6}$: 66

• $AB^2: BG^2 < (2016^{1/6} + 66^2): 66^2$ $AB^2: BG^2 < 4069284 \frac{1}{36}: 4356$

AB : BG < 2017¹/₄ : 66 Our goal!!

Calculating a Lower Bound for π

- Let P = Perimeter of 96-gon, and Let D = Diameter of circle.
- From above: $BG: AB > 66: 2017\frac{1}{4}$
- $\pi: 1 > P: D = 96 \cdot BG: AB$
- $\pi: 1 > 96 \cdot 66 : 2017\frac{1}{4} = 6336 : 2017\frac{1}{4} > 3\frac{10}{71} : 1$

 $\pi > 3\frac{10}{71}$