
–––– Al-Khwarizmi’s Algebra (9th Grade) –––– 

Note:  Muhammad ibn Musa al-Khwarizmi is known as the “father of algebra”.  His work, Hisab al-jabr 
wal-muqabala, written in 825AD, is considered to be the first book on algebra.  These sections of  
al-Khwarizmi’s book are found in our 9th Grade Workbook; it focuses on his derivation of a version of the 
quadratic formula.  I have reworded much of the text from Frederic Rosen’s translation of The Algebra of 
Mohammed Ben Musa (pp 5-21).   

On Calculating by Completion and Reduction 
INTRODUCTION 

When I considered what people generally want in calculating, I found that it is always a number.  I 
also observed that every number is composed of units, and that any number may be divided into units. 

Furthermore, I observed that the numbers which are required when calculating by completion and 
reduction are of three kinds, namely: roots, squares, and simple numbers1.  Of these, a root is any quantity 
which is to be multiplied by a number greater than unity, or by a fraction less than unity.  A square is that 
which results from the multiplication of the root by itself.  A simple number [henceforth called only 
“number”] is any number which may be produced without any reference to a root or a square. 

Of these three forms, then, two may be equal to each other, for example: squares equal to roots, 
squares equal to numbers, and roots equal to numbers2. 

Section I.  CONCERNING SQUARES EQUAL TO ROOTS 
The following is an example of squares equal to roots: “A square is equal to five roots”.  The root of 

the square then is five, and twenty-five forms its square, which is indeed equal to five times its root. 
Another example: “One-third of a square equals four roots.”  Then the whole square is equal to 12 

roots.  So the square is 144, and its root is 12.  Another such example: “Five squares equal ten roots.”  
Therefore one square equals two roots.  So the root of the square is two, and four represents the square. 

In this manner, that which involves more than one square, or is less than one square, is reduced to one 
square.  Likewise, the same is done with the roots; that is to say, they are reduced in the same proportion 
as the squares. 

Section II.  CONCERNING SQUARES EQUAL TO NUMBERS 
The following is an example of squares equal to numbers: “A square is equal to nine.”  Then nine is 

the square and three is the root.  Another example: “Five squares equal 80.”  Therefore one square is 
equal to one-fifth of 80, which is 16.  Or, to take another example: “Half of a square equals 18.”  Then the 
whole square equals 36, and its root is six.   

Thus any multiple of a square can be reduced to one square.  If there is only a fractional part of a 
square, you multiply it in order to create a whole square.  Whatever you do, you must do the same with 
the number. 

Section III.  CONCERNING ROOTS EQUAL TO NUMBERS 
The following is an example of roots equal to numbers: “A root is equal to three.”  Then the root is 

three and the square is nine.  Another example: “Four roots equal 20.”  Therefore one root is five, and the 
square is 25.  Still another example: “Half a root is equal to ten.”  Then the whole root is 20 and the 
square is 400. 

[In addition to the three above cases] I have found that these same three elements can produce three 
compound cases, which are: 

Squares and roots equal to numbers, 

Squares and numbers equal to roots, and 

Roots and numbers equal to squares. 

[These three above cases are variations of a quadratic equation.  Sections IV, V, and VI give methods for 
solving each of these cases.  Only section IV, which deals with the first case, is included in this source 
book and in our 9th Grade Workbook.] 

                                                      
1 The term “roots” stands for multiples of the unknown, our x; the term “squares” stands for multiples of our x2; 

“numbers” are constants. 
2 In our modern notation, this is x2 = bx, x2 = c, x = c. 
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Section IV.  CONCERNING SQUARES AND ROOTS EQUAL TO NUMBERS 
The following is an example of squares and roots equal to numbers: “A square and ten roots are equal 

to 39.”  The question here is: “What must the square be such that when it is combined with ten of its own 
roots, it will amount to a total of 39?”  To solve this, you take half the number of roots, which in this case 
gives us five.  Then you multiply this by itself to get 25, and then add that result to 39, which gives us 64.  
Now take the root of this, which is eight, and subtract from it half the number of roots, resulting in three.  
This is the root of the square which you sought; the square itself is then nine.  

This method is the same when you are given a number of squares.  You simply reduce them to a single 
square, and in the same proportion you reduce the roots and simple numbers that are connected with 
them. 

For example: “Two squares and ten roots equal 48.”  The question therefore is: “What must the 
amount of the two squares be such that when they are summed up and then combined with ten times their 
root, the result will be a total of 48?”  First of all it is necessary that the two squares be reduced to one.  
So we take half of everything mentioned in the statement.  It is the same now as if the original question 
had been: “A square and five roots equal 24”, which means: “What must the amount of a square be such 
that when it is combined with five times its root, the result will be a total of 24?”  To solve this, we halve 
the number of roots, which gives us 2½, and multiply that by itself, giving 6¼.  To this we add 24, which 
yields a sum of 30¼, and then take the root of this, which is 5½.  Subtracting half the number of roots, 
which is 2½, from this makes a remainder of three.  This is the root of the square, and the square itself is 
nine.   

[In section V Al-Khwarizmi gives a solution for solving Squares and Numbers Equal to Roots  

(10x = x2 + 21).  Section VI gives a solution for solving Roots and Numbers Equal to Squares  

(3x + 4 = x2).  We are skipping over these two sections.  We will now pick up with the last paragraph of 

section VI, which reads as follows:] 

I have now explained the six types of equations, which I first mentioned at the beginning of this book.  
I have taught how the first three must be solved; with these, it was not required that the roots be halved.  
And I showed how, with the other three, halving the roots is necessary.  I now think it is necessary to 
explain the reason for halving. 

Section VII. A DEMONSTRATION OF THE CASE “A Square and Ten Roots Equal 39.” 
First, we construct a square ab of unknown sides.  This 

square represents the square which, together with its root, 
you wish to find.  Any side of this square represents one of 
the roots that we wish to know.  We will now take one-
fourth of the number of roots, namely one-fourth of ten, to 
get 2½.  Combining this with the side of the square gives us 
four new rectangles (c, d, e, f), which we will place onto the 
sides of the square [as shown in the middle drawing].   

We now have a new, larger square except that small 
square pieces are missing from its four corners.  These four 
corners each have an area of 2½ times 2½.  When we add 
these four corners to our figure [as shown in the lower 
drawing], we have increased the area by four times the 
square of 2½, which is 25. 

From the original statement we know that the square ab 
combined with the four rectangles, which together represent 
ten roots, must be equal to a total of 39.  To this we add 25 
(the area of the four small corners) to get a total of 64, which 
is the area of the great square GH.  One side of this great 
square must then be eight.  If we subtract twice a fourth of 
ten, which is five, from this eight then we get three – the root 
of the square which we sought.   

It must be observed that here we have taken one-fourth 
the number of roots, multiplied that result by itself, and then 
multiplied that by four, which is the equivalent of taking half 
the number of roots and then multiplying that by itself 
[which is what was done in section IV]. 
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Section VIII.  A DEMONSTRATION OF THE CASE “Ten Roots Equals a Square and 21.” 

[This is our rewording of Section VIII.1  This section is not found in our 9th Grade Workbook.] 

This is the type of quadratic equation that yields two (positive) 
solutions.  The two solutions emerge from whether we draw the 
rectangle having a height more or less than half of the base (assuming 
the base is greater than the height).  

Solution #1 (The height of the rectangle is less than half its base.) 
First, we draw square ab (which represents x2) and then attach to it 
rectangle bg (which represents the 21 units) so that it is larger than 
the square ab.  This now forms a larger rectangle hg (which 
represents 10x).  At this moment, the diagram clearly represents the 
equation 10x = x2 + 21.  Our goal is to determine x, the length of the 
side of the square, ah.   
    Al-Khwarizmi bisects ag at t, constructs square cg, and then 
constructs square nc (so that en = ec).  The rectangle tb is congruent 
to rectangle md.  This means that rectangle bg and gnomon tenmlg 
both have equal areas of 21.  Since ag is 10, tg is 5, and the square tg 
has an area of 25.  Now, the square nc has an area of 4 (the area of 
the square cg minus the area of the gnomom).  So, ec must be 2, and 
tc minus ec then gives a length of 3 for both te and ah, which is the 
desired length of the side of the square ab.    

Solution #2 (The height of the rectangle is greater than half its base.) 
This time we begin our drawing by making rectangle bg smaller than the 
square ab.  Our goal, once again, is to find the length of the side of the 
square, ah. Again, we bisect ag at t, construct square cg, and then construct 
square nc (so that en = ec).  The rectangle tn is congruent to rectangle md.  
This means that rectangle bg and gnomon tenmlg both have equal areas of 
21.  Since ag is 10, tg is 5, and the square tg has an area of 25.  Now, square 
nc has an area of 4 (the area of the square cg minus the area of the gnomom).  
So, nm must be 2, which is also the length of mb.  Therefore, Qm (which is 
5) plus mb gives a length of 7 for Qb, which is also the desired length of ah, 
the side of the square ab.  
 
 

Section IX. A DEMONSTRATION OF THE CASE “A Square Equals Three Roots and 4.” 

[Al-Khwarizmi uses a diagram similar to the last one in order to prove this last case.  
I, however, have come up with the following proof, which is more similar to his first 
proof given in section VII, which is the best known.  This section is not found in our 
9th Grade Workbook] 

We start with square ab.  Our goal is to find the length of the side of this square.  
Since the rectangle (“three roots”) is smaller than the square, we cut it parallel to its 
base into four thin strips and then put these four strips inside the square such that 
where they overlap forms four small squares at the corners of the larger square (as 
shown on the right).  Given that the original rectangle had a width of 3, we know that 
the small squares each have an area of (¾)2, which is 9/16.  If we move all of these 
small squares toward the center (shown in the lower drawing) then the rectangle has 
now been cut into eight pieces that fit inside the original, large square in a way that 
the pieces no longer overlap.  Since the original problem states that the area of the 
square is 4 greater than the area of the rectangle, the shaded region represents how 
much larger the original square is than the rectangle.  The shaded region thus has an 
area of 4, and when combined with the four small corner squares (each with an area 
of 9/16) we get a medium-sized square (the shaded area sits inside this square) with an 
area of 6¼.  The side of this square is then the square root of 6¼, which is 2½.  By 
looking at the diagram, we can see that the desired length of the side of the original 
square ab must be 2½ + ¾ + ¾, which is 4. 

                                                      
1  See a History of Mathematics, by Carl Boyer, pp231-232, John Wiley & Sons, 1991. 
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